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Abstract

Adaptive collection of data is commonplace in applications throughout science and engineer-
ing. From the point of view of statistical inference however, adaptive data collection induces
memory and correlation in the sample, and poses significant challenge.

We consider the high-dimensional linear regression, where the sample is collected adaptively,
and the sample size n can be smaller than p, the number of covariates. In this setting, there are
two distinct sources of bias: the first due to regularization imposed for consistent estimation, e.g.
using the LASSO, and the second due to adaptivity in collecting the sample. We propose ‘online
debiasing’, a general procedure for estimators such as the LASSO, which addresses both sources
of bias. In two concrete contexts (i) batched data collection and (ii) time series analysis, we
demonstrate that online debiasing optimally debiases the LASSO estimate when the underlying
parameter θ0 has sparsity of order o(

√
n/ log p). In this regime, the debiased estimator can be

used to compute p-values and confidence intervals of optimal size.

1 Introduction

Modern data collection, experimentation and modeling are often adaptive in nature. For example,
clinical trials are run in phases, wherein the data from a previous phase inform and influences the
design of future phases. In commercial recommendation engines, algorithms collect data by eliciting
feedback from their users; data which is ultimately used to improve the algorithms underlying the
recommendations. In such applications, adaptive data collection is often carried out for objectives
correlated to, but distinct from statistical inference. In clinical trials, an ethical experimenter
might prefer to assign more patients a treatment that they might benefit from, instead of the
control treatment. In e-commerce, recommendation engines aim to minimize lost revenue to pure
experimentation. In other applications, collecting data is potentially costly, and practitioners may
choose to collect samples that are a priori deemed most informative. Since such objectives are
intimately related to statistical estimation, it is not surprising that adaptively collected data can
be used to derive statistically consistent estimates, often using standard estimators. The question
of statistical inference however, is more subtle: on the one hand, consistent estimation indicates
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that the collected sample is informative enough. On the other hand, adaptive collection induces
endogenous correlation in the sample, resulting in bias in the estimates. In this paper, we address
the following natural question raised by this dichotomy:

Can adaptively collected data be used for ex post statistical inference?

We will focus on the linear model, where the sample (y1, x1), (y2, x2), . . . , (yn, xn) satisfy:

yi = 〈xi, θ0〉+ εi, εi
iid∼ N(0, σ2). (1)

Here θ0 ∈ Rp is an unknown parameter vector relating the covariates xi to the response yi, and the
noise εi are i.i.d. N(0, σ2) random variables. In vector form, we write Eq.(1) as

y = Xθ0 + ε, (2)

where y = (y1, y2, . . . , yn), ε = (ε1, ε2, . . . , εn) and the design matrix X ∈ Rn×p has rows xT
1 , . . . , x

T
n .

When the sample is adaptively collected, the data point (yi, xi) is obtained after viewing the previous
data points (y1, x1), . . . , (yi−1, xi−1)1.

In the ‘sample-rich’ regime when p < n, the standard approach would be to compute the
least squares estimate θ̂LS = (XTX)−1XTy, and assess the uncertainty in θ̂LS using a central limit
approximation (XTX)1/2(θ̂LS−θ0) ≈ N(0, Ip) [LW82]. However, while the estimator θ̂LS is consistent
under fairly weak conditions, adaptive data collection complicates the task of characterizing its
distribution. One hint for this is the observation that, in stark contrast with the non-adaptive
setting, θ̂LS = θ0 + (XTX)−1XTε is, in general, a biased estimate of θ0. Adaptive data collection
creates correlation between the responses yi (therefore εi) and covariate vectors xi+1, xi+2, . . . , xn
observed in the future. In the context of multi-armed bandits, where the estimator θ̂LS for model
(1) reduces to sample averages, [XQL13, VBW15] observed such bias empirically, and [NXTZ17,
SRR19] characterized and developed upper bounds on the bias. While bias is an important problem,
we remark here that the estimate also shows higher-order distributional defects that complicate
inferential tasks.

This phenomenon is exacerbated in the high-dimensional or ‘feature-rich’ regime when p > n.
Here the design matrix X becomes rank-deficient, and consistent parameter estimation requires (i)
additional structural assumptions on θ0 and (ii) regularized estimators beyond θ̂LS, such as the
LASSO [Tib96]. Such estimators are non-linear, non-explicit and, consequently it is difficult to
characterize their distribution even with strong random design assumptions [BM12, JM14b]. In
analogy to the low-dimensional regime, it is relatively easier to develop consistency guarantees for
estimation using the LASSO when p > n. Given the sample (y1, x1), . . . (yn, xn) one can compute
the LASSO estimate θ̂L = θ̂L(Y,X;λ)

θ̂L = arg min
θ

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
, (3)

If θ0 is sparse with at most s0 � p non-zero entries and the design X satisfies some technical
conditions, the LASSO estimate, for an appropriate choice of λn has mean squared error E‖θ̂L−θ0‖22
of order σ2s0(log p)/n [BM+15, BB15]. In particular the estimate is consistent provided the sparsity

1Formally, we assume a filtration (Fi)i≤n to which the sequence (yi, xi)i≤n is adapted, and with respect to which
the sequence (xi)i≤n is predictable
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satisfies s0 = o(n/ log p), This estimator is biased because of two distinct reasons. The first is the
regularization imposed in Eq.(3), which disposes θ̂L to have small `1 norm. The second is the
correlation induced between X and ε due to adaptive data collection. To address the first source,
[ZZ11, JM14a, VdGBR+14] proposed a debiased estimate

θ̂off = θ̂L +
1

n
MXT(y −Xθ̂L), (4)

where M is chosen as an ‘approximate inverse’ of the sample covariance Σ̂ = XTX/n. The intuition
for this idea is the following decomposition that follows directly from Eqs.(1), (4):

θ̂off − θ0 = (Ip −M Σ̂)(θ̂L − θ0) +
1

n
MXTε. (5)

When the data collection is non-adaptive, X and ε are independent and therefore, conditional on
the design X, MXTε/n is distributed as N(0, σ2Q/n) where Q = M Σ̂MT. Further, the bias in
θ̂off is isolated to the first term, which intuitively should be of smaller order than the second term,
provided both θ̂L − θ0 and M Σ̂ − Ip are small in an appropriate sense. This intuition suggests

that, if the second term dominates the first term in θ̂off , we can produce confidence intervals for θ0

in the usual fashion using the debiased estimate θ̂off [JM14a, JM14b, VdGBR+14]. For instance,
with Q = M Σ̂MT, the interval

[
θ̂off

1 − 1.96σ
√
Q11/n, θ̂

off
1 + 1.96σ

√
Q11/n

]
forms a standard 95%

confidence interval for the parameter θ0,1. In the so-called ‘random design’ setting –when the rows
of X are drawn i.i.d. from a broad class of distributions– this approach to inference via the debiased
estimate θ̂off enjoys several optimality guarantees: the resulting confidence intervals have minimax
optimal size [Jav14, JM14a, CG17], and are semi-parametrically efficient [VdGBR+14].

This line of argument breaks down when the sample is adaptively collected as the debiased
estimate θ̂off still suffers the second source of bias. Indeed, this is exactly analogous to θ̂LS in low
dimensions. Since M , X and the noise ε are correlated, we can no longer assert that the term
MXTε/n is unbiased. Indeed, characterizing its distribution in general may be quite difficult,
given the intricate correlation between M , X and ε induced by the data collecting policy and the
procedure choosing M . As we will see in specific examples in Sections 2 and 3, this bias can have
a dramatic influence on the validity of θ̂off to compute confidence intervals and p-values.

Online debiasing Our approach builds on the insight in [DMST18] who propose the following
online debiased estimator θ̂on = θ̂on(y,X; (Mi)i≤n, λ) of the form

θ̂on ≡ θ̂L +
1

n

n∑
i=1

Mixi(yi − xT
i θ̂

L). (6)

The term ‘online’ is from the crucial constraint of predictability imposed on the sequence (Mi)i≤n.

Definition 1.1. (Predictability) Without loss of generality, there exists a filtration (Fi)i≥0 so that,
for i = 1, 2, . . . , n, (i) εi are adapted to Fi and εi is independent of Fj for j < i. We assume that
the sequences (xi)i≥1 and (Mi)i≥1 are predictable with respect to Fi, i.e. for each i, xi and Mi are
measurable with respect to Fi−1.

With predictability, the data points (yi, xi) are adapted to the filtration (Fi)i≤n and, moreover,
the covariates xi are predictable with respect to Fi. Intuitively, the σ-algebra Fi contains all
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information in the data, as well as potential external randomness, that is used to query the new
data point (yi+1, xi+1). Predictability ensures that only this information may be used to construct
the matrix Mi+1. Analogous to Eq.(5) we can decompose θ̂on into two components:

θ̂on = θ0 +
1√
n

(
Bn(θ̂L − θ0) +Wn

)
(7)

where Bn ≡
√
n
(
Ip −

1

n

∑
i

Mixix
T
i

)
,

and Wn ≡
1√
n

∑
i

Mixiεi.

Predictability of (Mi)i≤n ensures that Wn is unbiased and the bias in θ̂on is contained entirely in

the first term Bn(θ̂L− θ0). In fact, the sequence
√
nWn =

∑
iMixiεi is a martingale and, assuming

a martingale central limit behavior, we might expect that Wn is approximately Gaussian. With
this isolation achieved, the main idea is to minimize the (conditional) variance of the term Wn,
while keeping the bias, quantified by Bn, of stochastically smaller order. In [DMST18], this is
done using ridge regression to construct the debiasing sequence (Mi)i≤n, in the low-dimensional
setting (p fixed and n diverging). However, that approach yields strictly sub-optimal results in the
high-dimensional regime of p > n. An important contribution of this paper is to devise an online
debiasing approach for high-dimensional regime.

1.1 Contributions

In this paper, we will develop online debiasing for high-dimensional regression with adaptive data
collection, which can be used for statistical inference. We focus on two canonical scenarios of
adaptive data collection: (i) batched data collection and (ii) time series analysis.

Batched data collection: We model a data collecting process that operates in two batches or
phases. Data points collected in the first batch and, in particular, estimates computed on
them influence the data collection in the second batch.

Autoregressive time series: In this setting, the data is a high-dimensional time series z1, z2, . . . .
We consider the standard autoregressive model (AR) of bounded order d wherein the data
zt ∈ RN at time point t is modeled, up to exogenous variation, as a linear function of the
previous d time points zt−1, zt−2, . . . , zt−d.

The rest of the paper is organized as follows. Sections 2 and 3 develop concrete debiasing
schemes (Mi)i≤n for batched data collection and time series. In each case we (i) provide concrete
recipes to construct the debiasing sequence (Mi)i≤n and (ii) prove asymptotic distributional char-

acterizations of online debiased estimators θ̂on under reasonable assumptions. Section 4 shows how
the distributional characterizations obtained may be used to construct valid confidence intervals,
and p-values. Section 5 contains numerical experiments that demonstrate the validity our propos-
als on both synthetic and real data. In Section 6 we provide simple iterative algorithms based on
projected gradient and coordinate descent to compute the debiasing sequence (Mi)i≤n from data.

4



Notation Henceforth, we use the shorthand [p] ≡ {1, . . . , p} for an integer p ≥ 1, and a ∧
b ≡ min(a, b), a ∨ b ≡ max(a, b). We also indicate the matrices in upper case letters and use
lower case letters for vectors and scalars. We write ‖v‖p for the standard `p norm of a vector v,
‖v‖p = (

∑
i |vi|p)1/p and ‖v‖0 for the number of nonzero elements of v. We also denote by supp(v),

the support of v that is the positions of its nonzero entries. For a matrix A, ‖A‖p represents its `p
operator norm and ‖A‖∞ = maxi,j |Aij | denotes the maximum absolute value of its entries. For two
matrices A, B, we use the shorthand 〈A,B〉 ≡ trace(ATB). In addition φ(x) and Φ(x) respectively
represents the probability density function and the cumulative distribution function of standard
normal variable. Also, we use the term with high probability to imply that the probability converges
to one as n→∞.

2 Batched data collection

As a prototypical example of adaptive data collection in practice, we will consider a stylized model
wherein the experimenter (or analyst) collects data in two phases or batches. In the first phase, the
experimenter collects an initial sample (y1, x1), . . . , (yn1 , xn1) of size n1 < n where the responses
follow Eq.(1) and the covariates are i.i.d. from a distribution Px. Following this, she computes an
intermediate estimate θ̂1 of θ0 and then collects an additional sample (yn1+1, xn1+1), . . . , (yn, xn) of
size n2 = n−n1, where the covariates xi are drawn independently from the law of x1, conditional on
the event {〈x1, θ̂

1〉 ≥ ς}, where ς is a threshold, that may be data-dependent. This is a reasonable
model in scenarios where the response yi represents an instantaneous reward that the experimenter
wishes to maximize, as in multi-armed bandits [LR85, BCB+12]. The experimenter then faces the
classic exploration-exploitation dilemma: she has to trade-off learning θ0 well, which is necessary
to maximize her long-term reward, and exploiting what is known about θ0 to immediately accrue
reward. As an example, clinical trials may be designed to be response-adaptive and allocate patients
to treatments that they are likely to benefit from based on prior data [ZLK+08, KHW+11]. The
multi-armed bandit problem is a standard formalization of this trade-off, and a variety of bandit
algorithms are designed to operate in distinct phases of ‘explore–then exploit’[RT10, DM12, BB15,
PRC+16]. The model we describe above is a close approximation of data collected from one arm
in a run of such an algorithm.

With the full samples (y1, x1), . . . , (yn, xn) at hand, the experimenter would like to perform
inference on a fixed coordinate θ0,a of the underlying parameter. It might still be reasonable to

expect θ̂L = θ̂L(y,X;λ) to have small estimation error. Indeed, this can be shown to hold provided
the sample covariance Σ̂ = (1/n)

∑
i xix

T
i satisfies the compatibility condition [BVDG11].

Definition 2.1 (Compatibility). Fix a subset S ⊆ [p] and a number φ0 > 0, a matrix Σ̂ ∈ Rp×p
satisfies the (φ0, S)-compatibility condition, or is (φ0, S)-compatible, if for every non-zero vector v
with ‖vSc‖1 ≤ 3‖vS‖1:

|S|〈v, Σ̂v〉
‖v‖21

≥ φ0.

The following theorem is a version of Theorem 6.1 in [BVDG11] and is proved in an analogous
manner. We refer to Appendix A.1 for its proof.
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Theorem 2.2 ([BVDG11, Theorem 6.1]). Suppose that the true parameter θ0 is s0-sparse and
the distribution Px is such that with probability one the following two conditions hold: (i) the
covariance E{xxT} and E{xxT|〈x, θ̂1〉 ≥ ς} are (φ0, supp(θ0))-compatible and (ii) x as well as
x|〈x,θ̂1〉≥ς are κ-subgaussian. Suppose that n ≥ 4002(κ4/φ2

0)s2
0 log p the LASSO estimate θ̂L(y,X;λn)

with λn = 40κσ
√

(log p)/n satisfies, with probability exceeding 1− p−3,

‖θ̂L − θ0‖1 ≤
3s0λn
φ0

=
120κσ

φ0
s0

√
log p

n
.

Remark 2.3. (Estimating the noise variance) For the correct estimation rate using the LASSO,
Theorem 2.2 requires knowledge of the noise level σ, which is used to calibrate the regularization
λn. Other estimators like the scaled LASSO [SZ12] or the square-root LASSO [BCW11] allows to
estimate σ consistently when it is unknown. This can be incorporated into the present setting, as
done in [JM14a]. For simplicity, we focus on the case when the noise level is known. However, the
results hold as far as a consistent estimate of σ is used. Formally, an estimate σ̂ = σ̂(y,X) of the
noise level satisfying, for any ε > 0,

lim
n→∞

sup
‖θ0‖0≤s0

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) = 0 . (8)

Remark 2.4. At the expense of increasing the absolute constants in Theorem 2.2, the probability
1− p−3 can be made 1− p−C for any arbitrary constant C > 1.

As an example, non-degenerate Gaussian distributions satisfy the conditions required of Px in
Theorem 2.2. The proof of next Example is deferred to Section A.4 (See Lemmas A.12 and A.13)

Example 2.5. (Compatibility for Gaussian designs) Suppose that Px = N(0,Σ) for a positive
definite covariance Σ. Then, for any vector θ̂ and subset S ⊆ [p], the second moments E{xxT} and
E{xxT|〈x, θ̂〉 ≥ ς} are (φ0, S)-compatible with φ0 = λmin(Σ)/16.

Furthermore, both x and x|〈x,θ̂〉≥ς are κ-subgaussian with κ = 2λ
1/2
max(Σ).

Theorem 2.2 shows that, under an appropriate compatibility condition, the LASSO estimate
admits `1 error at a rate of s0

√
log p/n. Importantly, despite the adaptivity introduced by the

sampling of data, the error of LASSO estimate has the same asymptotic rate as expected without
adaptivity. With slightly stronger restricted-eigenvalue conditions on the covariances E{xxT} and
E{xxT|〈x, θ̂1〉 ≥ ς}, it is also possible to extend Theorem 2.2 to show `2 error of order s0 log p/n,
analogous to the non-adaptive setting. However, since the `2 error rate will not be used for our
analysis of online debiasing, we do not pursue this direction here.

Offline debiasing: a numerical illustration A natural strategy is to simply debias the esti-
mate θ̂L using the methods of [JM14b, JM14a, VdGBR+14], which we refer to as ‘offline’ debiasing.
It is instructive to see the weakness of offline debiasing on a concrete example to motivate online
debiasing. Consider a simple setting where θ0 ∈ {0, 1}600 with exactly s0 = 10 non-zero entries. We

obtain the first batch (y1, x1), . . . , (y500, x500) of observations with yi = 〈xi, θ0〉 + εi, xi
iid∼ N(0,Σ)

6



Figure 1: (Left) Histograms of the offline debiased estimate θ̂off and online debiased estimate θ̂on restricted

to the support of θ0. (Right) Histograms of the offline debiased estimate only using the first batch θ̂1 and

the online debiased estimate θ̂on. The dashed line indicates the true coefficient size. (Top) θ̂1 is debiased

LASSO on first batch, (Middle) θ̂1 is ridge estimate on first batch, (Bottom) θ̂1 is LASSO estimate on the
first batch. Offline debiasing works well once restricted to the first batch (called intermediate debiased in
the plots), but then loses power in comparison. Online debiasing is cognizant of the adaptivity and debiases
without losing power even in the presence of adaptivity.
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and εi
iid∼ N(0, 1) where we use the covariance Σ as below:

Σa,b =


1 if a = b,

0.1 if |a− b| = 1

0 otherwise.

Based on this data, we construct an intermediate estimator θ̂1 on (y(1), X1) using three different
strategies: (i) LASSO with oracle choice of the regularization λ, (ii) debiased LASSO and (ii) ridge
regression with cross-validation.

With this estimate we now sample new covariates x501, . . . , x1000 independently from the law
of x|〈x,θ̂1〉≥〈θ̂1,Σθ̂1〉1/2 and the corresponding outcomes y501, . . . , y1000. Unconditionally 〈x, θ̂1〉 ∼
N(0, 〈θ̂1,Σθ̂1〉), so this choice of threshold corresponds to sampling covariates that correlate with
θ̂1 at least one standard deviation higher than expected unconditionally.

This procedure yields two batches of data, each of n1 = n2 = 500 data points, combining to
give a sample of 1000 data points. From the full dataset (y1, x1), . . . , (y1000, x1000) we compute the
LASSO estimate θ̂L = θ̂L(y,X;λ) with λ = 2.5λmax(Σ)

√
(log p)/n.

Offline debiasing [JM14b, JM14a, JM18] gives the following prescription to debias θ̂L:

θ̂off = θ̂L +
1

n
Ω(θ̂1)XT(y −Xθ̂L),

where Ω(θ̂) is the population precision:

Ω(θ̂)−1 =
1

2
E{xxT}+

1

2
E
{
xxT

∣∣∣〈x, θ̂1〉 ≥ ‖Σ1/2θ̂1‖
}
.

To compute this, if x ∼ N(0,Σ) then we use the following identity (see Lemma A.11 for the proof):

x|〈x,θ̂1〉≥‖Σ1/2θ̂1‖
d
=

Σθ̂1

‖Σ1/2θ̂1‖
ξ1 + Σ′1/2ξ2, (9)

where ξ2 ∼ N(0, Ip), Σ′ = Σ − Σθ̂1(θ̂1)TΣ/〈θ̂1,Σθ̂1〉, and ξ1 is independent of ξ2 and satisfies the
truncated normal distribution with density:

dPξ1(u)

du
=

1√
2πΦ(−1)

exp(−u2/2)I(u ≥ 1).

Therefore

Ω(θ̂1)−1 = Σ +
1

2
(E{ξ2

1} − 1)
Σθ̂1(θ̂1)TΣ

〈θ̂1,Σθ̂1〉
,

Ω(θ̂1) = Σ−1 +
( 2

1 + E{ξ2
1}
− 1
) θ̂1(θ̂1)T

〈θ̂1,Σθ̂1〉
,

where the second equation is an application of Sherman–Morrison formula.

As we will see in the next subsection, online debiasing instead proposes the following construc-
tion:

θ̂on = θ̂L +
1

n
Σ−1XT

1 (y(1) −X1θ̂
L) +

1

n
Ω(2)(θ̂1)XT

2 (y(2) −X2θ̂
L).

8



Here y(1), y(2), X1, X2 are the outcomes (resp. covariates) from the first and second batches and
Ω(2)(θ̂) = E{xxT|〈x, θ̂1〉 ≥ ‖Σ1/2θ̂‖} is the population precision on the second batch. Similar to
Ω(θ̂1) we can use the distributional identity (9) to obtain the closed form formula

Ω(2)(θ̂1) = Σ−1 +
(
E{ξ2

1}−1 − 1
) θ̂1(θ̂1)T

〈θ̂1,Σθ̂1〉
.

We generate the dataset for 100 Monte Carlo iterations and compute the offline debiased es-
timate θ̂off and the online debiased estimate θ̂on for each iteration. Figure 1 (left panel) shows
the histogram of the entries θ̂off on the support of θ0 (red). In the same panel, we also plot the
corresponding histogram of entries of our online debiased entries θ̂on (blue). For all three choices of
θ̂1, the online debiased estimate θ̂on is appropriately centered around the true coefficient. However
this is only true for the offline debiased estimate θ̂off when θ̂1 is chosen to be the LASSO estimate
on the first batch.

One can also split samples in the following way. Since the second batch of data was adaptively
collected while the first batch was not, we can compute a debiased estimate using only the first,
non-adaptive batch:

θ̂off,1 ≡ θ̂L(y(1), X1) +
1

n
Σ−1XT

1 (y(1) −X1θ̂
L(y(1), X1)).

Figure 1 (right panel) shows the histogram of the entries of θ̂off,1 restricted to the support of θ0, and
the comparison with θ̂on. As can be expected, both θ̂off,1 and θ̂on are appropriately centered around
the true coefficient 1. However, as is common with sample-splitting, θ̂off,1 displays a larger variance
and correspondingly loses power in comparison with θ̂on since it uses only half of the data. The
power loss becomes even more pronounced when there are more than two phases of data collection,
or if the phases are particularly imbalanced.

In this illustration, we also assumed the knowledge of Px, i.e. the laws of the covariates in
each batch. This was necessary to compute the precisions Ω(θ̂1) and Ω2(θ̂1), which figured in the
estimates θ̂off and θ̂on respectively. When there are Ω(p2) unlabeled data points available, these
precisions can be estimated accurately from the data. This places a stringent requirement on the
sample size, especially in the high-dimensional setting when p is large. In the following, we will
describe a general construction of the online debiased estimate θ̂on that avoids oracle knowledge of
Px and does not require reconstructing the population precisions accurately.

2.1 Constructing the online debiased estimator

The samples naturally separate into two batches: the first n1 data points and the remaining n2

points. Let X1 and X2 denote the design matrices of the two batches and, similarly, y(1) and y(2)

the two responses vectors. We propose an online debiased estimator as follows:

θ̂on = θ̂L +
1

n
M (1)XT

1 (y(1) −X1θ̂
L) +

1

n
M (2)XT

2 (y(2) −X2θ̂
L), (10)

where we will construct M (1) as a function of X1 and M (2) as a function of X1 as well as X2. The
proposal Eq.(10) follows from the general recipe in Eq.(6) by setting

• Mi = M (1) for i = [n1] and Mi = M (2) for i = n1 + 1, . . . , n.

9



• Filtrations Fi constructed as follows. For i < n1, y1, . . . , yi, x1, . . . xn1 and ε1, . . . , εi are
measurable with respect to Fi. For i ≥ n1, y1, . . . , yi, x1, . . . , xn and ε1, . . . εi are measurable
with respect to Fi.

By construction, this choice satisfies the predictability condition.

Before we describe how we construct the matrices M (1) and M (2), we note that Eq.(10) nests
an intuitive ‘sample splitting’ approach. Indeed, debiasing θ̂L using exactly one of the two batches
is equivalent to setting one of M (1) or M (2) to 0. While sample splitting can be shown to work
under appropriate conditions, our approach is more efficient with use of the data and gains power
in comparison. Moreover, as we will see in Section 3 it can also be adapted to settings like time
series where sample splitting is not immediately applicable.

We construct M (1) and M (2) using a modification of the program used in [JM14a]. Let Σ̂(1) =
(1/n1)XT

1 X1 and Σ̂(2) = (1/n2)XT
2 X2 be the sample covariances of each batch; let M (1) have rows

(m
(1)
a )1≤a≤p and similarly for M (2). Using parameters µ`, L > 0 that we set later, we choose m

(`)
a ,

the ath row of M (`), as a solution to the program

minimize 〈m, Σ̂(`)m〉

subject to ‖Σ̂(`)m− ea‖∞ ≤ µ`, ‖m‖1 ≤ L. (11)

Here ea is the ath basis vector: a vector which is one at the ath coordinate and zero everywhere
else. The program (11) differs from that in [JM14a] by the `1 constraint on m. The idea for the
program (11) is simple: the first constraint ensures that Σ̂(`)m is close, in `∞ sense to the ea, the
ath basis vector and as we will see in Theorem 2.8 it controls the bias term ∆ of θ̂on. The objective
is a multiple of the variance of the martingale term W in θ̂on (cf. Eq. (15)). We wish to minimize
this as it directly affects the power of the test statistic or the length of valid confidence intervals
constructed based on θ̂on.

The additional `1 constraint is to ensure that the value of the program 〈m(`)
a , Σ̂(`)m

(`)
a 〉 does

not fluctuate much from sample to sample (this is further discussed as ‘stability condition’ in
Lemmas A.9 and 3.8). This ensures that the martingale part of the residual displays a central
limit behavior. In the non-adaptive setting, inference can be performed conditional on design X,

and fluctuation in 〈m(`)
a , Σ̂(`)m

(`)
a 〉 is conditioned out. In the adaptive setting, this is not possible:

one effectively cannot condition on the design without conditioning on the noise realization, and
therefore we perform inference unconditionally on X.

The program (11) is a convex optimization problem and thus standard interior point methods
can be used to solve it in polynomial time [BV04]. We also show in Section 6, simple iterative
schemes based on coordinate descent and projected gradient as alternate fast methods to solve
program (10).
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2.2 Online debiasing: a distributional characterization

We begin the analysis of the online debiased estimator θ̂on by a decomposition that mimics the
classical debiasing.

θ̂on = θ̂0 +
1√
n

(
Bn(θ̂L − θ0) +Wn

)
, (12)

Bn =
√
n
(
Ip −

n1

n
M (1)Σ̂(1) − n2

n
M (2)Σ̂(2)

)
(13)

Wn =
1√
n

∑
i≤n1

M (1)xiεi +
1√
n

∑
n1<i≤n

M (2)xiεi. (14)

Assumption 2.6. (Requirements of design) Suppose that the distribution Px and the intermediate
estimate θ̂1, that is used in collecting the second batch, satisfy the following:

1. There exists a constant Λ0 > 0 so that the eigenvalues of E{xxT} and E{xxT|〈x, θ̂1〉 ≥ ς} are
bounded below by Λ0.

2. There exists a constant φ0 > 0 so that, E{xxT} and E{xxT|〈x, θ̂1〉 ≥ 0} are (φ0, supp(θ0))-
compatible.

3. The laws of x and x|〈x,θ̂1〉≥ς are κ-subgaussian for a constant κ > 0.

4. The precision matrices Ω = E{xxT}−1 and Ω(2)(θ̂1) = E{xxT|〈x, θ̂1〉 ≥ ς}−1 satisfy ‖Ω‖1 ∨
‖Ω(2)(θ̂1)‖1 ≤ L.

5. The conditional covariance Σ(2)(θ) = E{xxT|〈x, θ〉 ≥ ς} is K-Lipschitz in its argument θ, i.e.
‖Σ(2)(θ′)− Σ(2)(θ)‖∞ ≤ K‖θ − θ′‖1.

The first two conditions of Assumption 2.6 are for ensuring that the base LASSO estimator θ̂L

has small estimation error. In addition, our debiasing makes use of the third and fourth constraints
on the precision matrices of the sampling distributions. In the above, we will typically allow L = Ln
to diverge with n.

In the following Example we show that Gaussian random designs satisfy all the conditions of
Assumption 2.6. We refer to Section A.4 for its proof.

Example 2.7. Let Px = N(0,Σ) and θ̂ be any vector such that ‖θ̂‖1‖θ̂‖∞ ≤ LΣλmin(Σ)‖θ̂‖/2 and
‖Σ−1‖1 ≤ LΣ/2. Then the distributions of x and x|〈x,θ̂〉≥ς , with ς = ς̄〈θ̂,Σθ̂〉1/2 for a constant ς̄ ≥ 0

satisfy the conditions of Assumption 2.6 with

Λ0 = λmin(Σ), φ0 =
λmin(Σ)

16
, κ = 2λ1/2

max(Σ), K =
√

8(1 + ς̄2)
λmax(Σ)3/2

λmin(Σ)1/2
, L = LΣ.

Under Assumption 2.6 we provide a non-asymptotic bound on the bias of the online debiased
estimator θ̂on.

Theorem 2.8. (Non-asymptotic bound on bias) Under Assumption 2.6 and the sample size con-
dition that n ≥ 4002κ4s2

0 log p/φ2
0 and n1 ∧ n2 ≥ (2Λ0/κ

2 + (30κ)2/Λ0) log p, we have that

√
n(θ̂on − θ0) = Wn + ∆n, (15)

11



where E{Wn} = 0 and

P
{
‖∆n‖∞ ≥ 4000

κ2σ√
Λ0φ0

s0 log p√
n

}
≤ p−3. (16)

Further, assuming ‖θ0‖1 ≤ cs0p
3(log p)/n, we have

‖E{θ̂on − θ0}‖∞ ≤ 10

(
400

κ2σ√
Λ0φ0

+ c

)
s0 log p

n
. (17)

The proof of Theorem 2.8 is given in Appendix A.2. When the parameters Λ0, φ0, σ, κ are of
order one, the theorem shows that the bias of the online debiased estimator is of order s0 log p/n.
This may be compared with the LASSO estimator θ̂L whose bias is typically of order λ � σ

√
log p/n.

In particular, in the regime when s0 = o(
√
n/ log p), this bias is asymptotically dominated by the

variance, which is of order σ/
√
n.

In order to establish asymptotic Gaussian behavior of the online debiased estimate θ̂on, we
consider a specific asymptotic regime for the problem instances.

Assumption 2.9. (Asymptotic regime) We consider problem instances indexed by the sample size
n, where n, p, s0 satisfy the following:

1. lim infn→∞
n1∧n2
n ≥ c, for a positive universal constant c ∈ (0, 1]. In other words, both batches

contain at least a fixed fraction of data points.

2. The parameters satisfy:

lim
n→∞

1

φ0
s0

√
log p

n

(
L2K ∨

√
log p

Λ0

)
→ 0 . (18)

The following proposition establishes that in the asymptotic regime, the unbiased component
Wn has a Gaussian limiting distribution. The key underlying technical idea is to ensure that the
martingale sum in Wn is stable in an appropriate sense.

Proposition 2.10. Suppose that Assumption 2.6 holds and consider the asymptotic regime of
Assumption 2.9. Let a = a(n) ∈ [p] be a fixed sequence of coordinates. Define the conditional
variance Vn,a of the ath coordinate as

Vn,a = σ2
(n1

n
〈m(1)

a , Σ̂(1)m(1)
a 〉+

n2

n
〈m(2)

a , Σ̂(2)m(2)
a 〉
)
. (19)

Then, for any bounded continuous ϕ : R→ R

lim
n→∞

E
{
ϕ
( Wn,a√

Vn,a

)}
= E{ϕ(ξ)},

where ξ ∼ N(0, 1). The same holds for ϕ being a step function ϕ(z) = I(z ≤ x) for any x ∈ R. In
particular,

lim
n→∞

P
{ Wn,a√

Vn,a
≤ x

}
= Φ(x),

where Φ is the standard Gaussian cdf.

12



The proof of Proposition 2.10 is deferred to Appendix A.3. The combination of Theorem 2.8
and Proposition 2.10 immediately yields the following distributional characterization for θ̂on.

Theorem 2.11. Under Assumptions 2.6 and 2.9, the conclusion of Proposition 2.10 holds with√
n(θ̂on

a − θ0) in place of Wn. In particular,

lim
n→∞

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
= Φ(x), (20)

where Vn,a is defined as in Proposition 2.10.

To compare the sample size requirements made for `1-consistent estimation, i.e. Theorem 2.2
and those in Assumption 2.9, it is instructive to simplify to the case when κ, φ0,Λ0 are of order
one. Then Theorem 2.2 requires, for `1-consistency, that n1 ∨ n2 = Ω(s2

0 log p), i.e. at least one of
the batches is larger than s2

0 log p. However, Theorem 2.11 makes the same assumption on n1 ∧ n2,
or both batches exceed s2

0 log p in size. For online debiasing, this is the case of interest. Indeed if
n1 � n2 (or vice versa), we can apply offline debiasing to the larger batch to obtain a debiased
estimate. Conversely, when n1 and n2 are comparable as in Assumption 2.9, this ‘sample-splitting’
approach leads to loss of power corresponding to a constant factor reduction in the sample size.
This is the setting addressed in Theorem 2.11 via online debiasing.

3 Online debiasing for high-dimensional time series

Consider the standard vector autoregressive model of order d (or VAR(d) for short) [SS06]. In this
model the data point zt linearly evolve according to the dynamics:

zt =

d∑
`=1

A(`)zt−` + ζt, (21)

where A(`) ∈ Rp×p and ζt
iid∼ N(0,Σζ). VAR models are extensively used across science and engineer-

ing (see [FSGM+07, SW01, HENR88, SBB15] for notable examples in macroeconomics, genomics
and neuroscience). Given the data z1, . . . , zT , a fundamental task is to estimate the parameters of
the VAR model, viz. the matrices A(1), . . . A(d). The estimates of the parameters can be used in a
variety of ways depending on the context: to detect or test for stationarity, forecast future data,
or suggest causal links. Since each matrix is p × p, this forms a putative total of dp2 parameters,
which we estimate from a total of (T − d)p linear equations (Eq.(21) with t = d + 1, . . . , T ). For
the ith coordinate of zt, Eq.(21) reads

zt,i =

d∑
`=1

〈zt−`, A
(`)
i 〉+ ζt,i, (22)
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where A
(`)
i denotes the ith row of the matrix A(`). This can be interpreted in the linear regression

form Eq.(1) in dimension dp with θ0 ∈ Rdp, X ∈ R(T−d)×dp, y, ε ∈ RT−d identified as:

θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T,

X =


zT
d zT

d−1 . . . zT
1

zT
d+1 zT

d . . . zT
2

...
...

. . .
...

zT
T−1 zT

T−2 . . . zT
T−d

 ,
y = (zd+1,i, zd+2,i, . . . , zT,i),

ε = (ζd+1,i, ζd+2,i, . . . , ζT,i). (23)

We omit the dependence on the coordinate i, and also denote the rows of X by x1, . . . , xn ∈ Rdp,
with n = T − d. Given sufficient data, or when T is large in comparison with dp, it is possible
to estimate the parameters using least squares [SS06, LW82]. In [BM+15], Basu and Michailidis
consider the problem of estimating the parameters when number of time points T is small in
comparison with the total number of parameters dp. In order to make the estimation problem
tractable, they assume that the matrices A(`) are sparse, and prove an estimation result. These
build on similar ideas as Theorem 2.2, and prove appropriate restricted eigenvalue property for the
design XTX/n. As anticipated, this result hinges on the stationary properties of the model (21),
which we summarize prior to stating the estimation result.

Definition 3.1. (Restricted Eigenvalue Property (RE)) For a positive semidefinite matrix S ∈
Rm×m and numbers α, φ > 0, the matrix S satisfies the restricted eigenvalue property, denoted by
S ∈ RE(α, τ), if for any vector v ∈ Rm:

〈v, Sv〉 ≥ α‖v‖22 − ατ‖v‖21 . (24)

In [BM+15], the authors provide conditions on the autocovariance of the data points, which
imply the restricted eigenvalue property for the sample covariance, with high probability. Formally,
assuming that the covariates and noise terms are generated according to centered Gaussian sta-
tionary processes, [BM+15] introduce a notion of stability of the processes based on their spectral
density. To be concrete, for the stationary process xt = (zT

t+d−1, . . . , z
T
t )T (rows of X), let Γx(s) =

Cov(xt, xt+s), for t, s ∈ Z and define the spectral density fx(r) ≡ 1/(2π)
∑∞

`=−∞ ΓX(`)e−j`r, for
r ∈ [−π, π] . The measure of stability of the process is defined as the maximum eigenvalue of the
density

M(fx) ≡ sup
r∈[−π,π]

σmax(fx(r)) . (25)

Likewise, the minimum eigenvalue of the spectrum is defined as m(fx) ≡ inf
r∈[−π,π]

σmin(fx(r)), which

captures the dependence among the covariates. (Note that for the case of i.i.d. samples, M(fx)
and m(fx) reduce to the maximum and minimum eigenvalue of the population covariance.)

Definition 3.2 (Stability and invertibility of VAR(d) Process [BM+15]). A VAR(d) process with
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an associated reverse characteristic polynomial

A(γ) = I −
d∑
`=1

A(`)γ` , (26)

is called stable and invertible if det(A(γ)) 6= 0 for all γ ∈ C with |γ| = 1.

An important contribution in [BM+15] is to show that, for a stable VAR process m(fx) > 0
with sample size n & s0 log p, the sample covariance XTX/n satisfies the RE(α, τ) condition holds
for proper numbers α, τ , with high probability.

Define

µmin(A) = min
|γ|=1

Λmin(A∗(γ)A(γ)) ,

µmax(A) = max
|γ|=1

Λmax(A∗(γ)A(γ)) .

By bounding m(fx) and M(fx) in terms of µmin(A), µmax(A) and Λmin(Σε), Λmax(Σε), we have the
following result:

Proposition 3.3. Let {z1, . . . , zT } be generated according to the (stable) VAR(d) process (21)
and let n = T − d. Then there exist constants c ∈ (0, 1) and C > 1 such that for all n ≥
C max{ω2, 1} log(dp), with probability at least 1−exp(−cnmin{ω−2, 1}), we have XTX/n ∈ RE(α, τ).
Here, α, ω and τ are given by:

ω =
dΛmax(Σε)µmax(A)

Λmin(Σε)µmin(A)
,

α =
Λmin(Σε)

2µmax(A)
,

τ = α(ω2 ∨ 1)
log(dp)

n
.

(27)

Proposition 3.3 can be proved along the same lines as [BM+15, Proposition 4.2]. However, our
proofs differ slightly as follows:

1. [BM+15] writes the VAR(d) model as a VAR(1) model and then vectorize the obtained equation
to get a linear regression form (cf. Section 4.1 of [BM+15]). This way, they prove I ⊗
(XTX/n) ∈ RE(α, τ). But in their proof, as a first step they show that XTX/n ∈ RE(α, τ)
as we need here.

2. [BM+15, Proposition 4.2] assumes n ≥ Ckmax{ω2, 1} log(dp), with k =
∑d

`=1 ‖vec(A(`))‖0,
the total number of nonzero entries of matrices A` and then it is later used to get τ ≤ 1/(Ck).
However, note that the definition of RE condition is independent of the sparsity of matrices
A(`). So, we can use their result with k = 1.

3. The proof of RE condition involves upper bounding M(fx). We bound M(fx) in a different
way than [BM+15, Proposition 4.2]. We refer to Appendix B.1 for more details.
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With the restricted eigenvalue property in place for the sample covariance XTX/n, there is a
standard argument to obtain estimation error for the `1-regularized estimator, which has also been
followed in other work, e.g., [BVDG11, BRT09, LW12].

Proposition 3.4 (Estimation Bound). Recall the relation y = Xθ0 + ε, where X, y, θ0 are given
by (23) and let θ̂L be the Lasso estimator

θ̂L = arg min
θ∈Rdp

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
. (28)

Assume that |supp(θ0)| ≤ s0. There exist constants c, C > 0 such that the following happens. For
n ≥ Cα(ω2∨1)s0 log(dp), and λn = λ0

√
log(dp)/n, with λ0 ≥ λ∗ ≡ 4Λmax(Σε)(1∨µmax(A))/µmin(A),

with probability at least 1− exp(−c log(dp2))− exp(−cn(1 ∧ ω−2)), we have

‖θ̂L − θ0‖1 ≤ Cσ
s0λn
α

,

where α, ω are defined in Proposition 3.3.

3.1 Constructing the online debiased estimator

We partition the time indices [n] into K episodes E0, . . . , EK−1, with E` of length r`, so that∑K−1
`=0 r` = n. We also let n` = r0 + . . .+ r`, for ` = 0, . . . ,K − 1; hence, nK−1 = n. Define

Σ̂(`) =
1

n`

∑
t∈E0∪...∪E`

xtx
T
t ,

be the sample covariance of the features in the first `+ 1 episodes. For each coordinate a ∈ [dp], we
construct the decorrelating vector m`

a ∈ Rdp at step ` ≥ 0 by solving the following optimization:

minimize mTΣ̂(`)m

subject to ‖Σ̂(`)m− ea‖∞ ≤ µ`, ‖m‖1 ≤ L ,
(29)

for some appropriate values of µ`, L > 0 which will be determined later from our analysis of the
debiased estimator.

We then construct the online debiased estimator for coordinate a of θ0 as follows:

θ̂on
a = θ̂L

a +
1

n

K−2∑
`=0

∑
t∈E`+1

〈m`
a, xt〉(yt − 〈xt, θ̂L〉) (30)

Defining M (`) ∈ Rdp×dp as the matrix with rows (m`
a)

T for a ∈ [dp], we can write θ̂on as:

θ̂on = θ̂L +
1

n

K−2∑
`=0

∑
t∈E`+1

M (`)xt(yt − 〈xt, θ̂L〉) . (31)

In Section 3.2, we show that the constructed online debiased estimator θ̂on is asymptotically
unbiased and admits a normal distribution. To do that we provide a high probability bound on the
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bias of θ̂on (See Lemma B.1). This bound is in terms of the batch sizes r`, from which we propose
the following guideline for choosing them: r0 ∼

√
n and r` ∼ β`, for a constant β > 1, and ` ≥ 1.

Note that the programs constructing M (`) closely resemble the optimization (11) proposed in
Section 2. However, we define the matrices Σ̂(`) (and consequently the sizes n1, n2, . . . ) differently
for both. The reason for this is that, by assumption, the time series data are stationary, while the
batched data of Section 2 are non-stationary. Therefore, in time series, we can use all past data
points in Optimization (29) to form an approximate inverse. On the other hand, in non-stationary
settings like Section 2, it is better to restrict the samples included in the sample covariance Σ̂(`) to
a smaller window.

Before proceeding into the distributional characterization of the online debiased estimator for θ0

(coefficients of Ai matrices), we discuss a simple numerical example in which the (offline) debiased
estimator of [JM14a] does not undergo an unbiased normal distribution, while the constructed
online debiased estimator admits such distribution.

A numerical example. Consider the linear time series model described in 21 with p = 15,
d = 5, T = 60, and diagonal A(i) matrices with value b = 0.15 on their diagonals. Note that this
a high-dimensional setting as the number of parameters dp exceeds n = T − d, as the model (23).
The covariance matrix Σζ of the noise terms ζt is chosen as Σζ(i, j) = ρI(i 6=j) with ρ = 0.5 and
i, j ∈ [p]. The population covariance matrix of vector xt = (zT

t+d−1, . . . , z
T
t )T is a dp by dp matrix

Σ consisting of d2 blocks of size p × p with Γz(r − s) as block (r, s). The analytical formula to
compute Γz(`) is given by [BM+15]:

Γz(`) =
1

2π

π∫
−π

A−1(e−jθ)Σζ(A−1(e−jθ))∗ej`θdθ ,

where A(γ) is given in equation (26). Figure 2 shows the heat maps of magnitudes of the elements
of Σ and the precision matrix Ω = Σ−1 for the on hand VAR(5) process. We focus on the noise
component of both online and offline debiased estimators, i.e.,

W on =
1√
n

K−2∑
`=0

M (`)
K−2∑
`=0

∑
t∈E`+1

xtεt , (32)

W off =
1√
n
Moff

n∑
t=1

xtεt , (33)

with M (`) constructed from the solutions to optimization (29) for ` = 0, . . . ,K − 2, and Moff is
also constructed by optimization (29), considering all the covariates (i.e., setting ` = K − 1). Also,
recall that ε = (ζd+1,i, ζd+2,i . . . , ζT,i) by equation (23).

In Figure 3, we show the QQ-plot, PP-plot and histogram of W on
1 and W off

1 (corresponding to
the entry (1, 1) of matrix A1) for 1000 different realizations of the noise ζt. As we observe, even the
noise component W off is biased because the offline construction of M depends on all features xt and
hence endogenous noise ζt. Recall that for the setting with an i.i.d sample, the noise component is
zero mean gaussian for any finite sample size n. However, the online construction of decorrelating
matrices M (`), makes the noise term a martingale and hence W on converges in distribution to a zero
mean normal vector, allowing for a distributional characterization of the online debiased estimator.
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Figure 2: Heat maps of magnitudes of elements of covariance matrix Σ ≡ E(xix
T
i ) (left plot), and precision

matrix Ω = Σ−1 (right plot). In this example. xi’s are generated from a VAR(d) model with covariance
matrix of noise Σζ(i, j) = ρ|i−j| with values d = 5, p = 15, T = 60, ρ = 0.5, and diagonal A(i) matrices with
b = 0.15 on diagonals.

3.2 Distributional characterization of online debiased estimator for time series

Similar to the case of batched data collection, we start our analysis of the online debiased estimator
θ̂on by considering a bias-variance decomposition of it. Using yt = 〈xt, θ0〉+εt in the definition (31):

θ̂on − θ0 = θ̂L − θ0 +
1

n

K−2∑
`=0

∑
t∈E`+1

M (`)xtx
T
t (θ0 − θ̂L) +

1

n

K−2∑
`=0

∑
t∈E`+1

M (`)xtεt

=
(
I − 1

n

K−2∑
`=0

∑
t∈E`+1

M (`)xtx
T
t

)
(θ̂L − θ0) +

1

n

K−2∑
`=0

∑
t∈E`+1

M (`)xtεt . (34)

We adopt the shorthand R(`) = (1/r`)
∑

t∈E` xtx
T
t for the sample covariance of features in

episode `. Letting

Bn ≡
√
n
(
I − 1

n

K−2∑
`=0

r`+1M
(`)R(`+1)

)
, (35)

Wn ≡
1√
n

K−2∑
`=0

M (`)
( ∑
t∈E`+1

xtεt

)
, (36)

we arrive at the following decomposition

θ̂on = θ0 +
1√
n

(
Bn(θ̂L − θ0) +Wn

)
. (37)

Similar to the case of batched data collection, here by constructing the decorrelating matrices
M (`) over episodes, we ensure that the noise part in the debiased estimatorWn is indeed a martingale
and using the martingale CLT it admits an asymptotically gaussian distribution. To see why,
recall the notation xt = (zT

t+d−1, . . . , z
T
t )T (row of X). Therefore, xt is independent of {ζr,a :
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Figure 3: Different empirical behavior of noise terms associated with online and offline debiased fixed coor-
dinate of a VAR(d) model with Σζ(i, j) = ρ|i−j|. In this example, d = 50, p = 15, T = 60, ρ = 0.5, and A(i)

matrices are diagonal with value b = 0.15 on their diagonals. Plots 3a, 3b, and 3c show the QQ plots, PP
plots, and the histogram of online debiased noise terms (blue) and offline debiased noise terms (red) of 1000
independent experiments, respectively and black curve/lines denote the ideal standard normal distribution.
Deviation of offline debiased noise terms from standard normal distribution implies the failure of offline de-
biasing method for statistical inference purposes for cases when samples are correlated. On the other hand,
as we were expecting from theoretical arguments in subsection 3.2, online debiased noise terms are highly
aligned with standard normal distribution. The solid and dash lines indicate the location of the mean of
offline and online debiased noise terms, respectively. A significant distance of the average of offline data
points (solid line) from zero can be seen in this figure.
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r ≥ t + d − 1} ≡ {εr : r ≥ t − 1}. That said, since M (`) = (m`
1, . . . ,m

`
dp)

T is a function of
{xt : t ∈ E0 ∪ . . .∪E`} = {zt : t ∈ [n`]}, it is independent of {εt : t ≥ n`}. Finally εt are zero mean
which implies that Wn is a martingale, with respect to the natural filtration Fj = {ε1, . . . , εj},
j ∈ N.

Assumption 3.5. (Requirements of design) Suppose that

1. Λmin(Σε) > c1 > 0 and µmax(A) < c2 <∞.

2. Denoting by Σ ≡ E(xtx
T
t ) ∈ Rdp×dp the population covariance of the data points {xt}. Define

LΣ ≡ max
i∈[dp]

‖Σ−1ei‖1 , DΣ ≡ max
i∈[dp]

Σi,i . (38)

Assume that L2
ΣDΣ = oP (n/ log3(dpn)).

As we show in the proof of Proposition 3.3, Λmin(Σ) > Λmin(Σε)/µmax(A). Therefore, Assumption
(1) above implies that Λmin(Σ) > c > 0, for some constant c > 0.

As we will see from the analysis of the term Bn (and similar to the case of batched data collec-
tion), the parameters µ` in the optimization (29) play a key role in construction of the decorrelating
matrices M (`) and controlling the term Bn (which directly controls the bias of θ̂on). We would like
to choose µ` small enough to reduce the bias, but large enough so that the optimization (29) is yet
feasible. This brings us to upper bounding

µmin
` (Σ̂(`)) ≡ min

M∈Rdp×dp
|M Σ̂(`) − I|∞ .

Our next lemma establishes such bound that hold with probability converging rapidly to one as
n, p→∞.

Lemma 3.6. For a > 0, let Gn = Gn(τ) be the following probability event

Gn(τ) ≡
{

Σ̂(`) ∈ Rdp×dp : µmin
` (Σ̂(`)) < τ

√
log(dp)

n`

}
. (39)

Then there exists a constant c > 0 such that letting

c0 ≡ c
( τ

3d

)2( µmin(A)

µmax(A)

)2(Λmin(Σε)

Λmax(Σε)

)2
− 2 ,

and for n` ≥ c0+2
c log(dp), the following holds true.

P(Σ̂(`) ∈ Gn) ≥ 1− 6(dp)−c
′
0+2 , c0 ≡ c

( τ
3d

)2( µmin(A)

µmax(A)

)2(Λmin(Σε)

Λmax(Σε)

)2
− 2 . (40)

The proof of Lemma 3.6 is given in Appendix B.2.

Theorem 3.7. (Bias control) Consider the VAR(d) model (21) for time series and let θ̂on be the
debiased estimator (31) with µ` = τ

√
(log p)/n` and L ≤ LΣ, with LΣ defined by (38). Then, under
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Assumption 3.5(1), the sample size condition n ≥ C(ω2 ∨ 1)s0 log(dp), and for λ = λ0

√
log(dp)/n

with λ0 ≥ λ∗ ≡ 4Λmax(Σε)(1 ∨ µmax(A))/µmin(A)), we have that

√
n(θ̂on − θ0) = Wn + ∆n, (41)

where E{Wn} = 0 and

P
{
‖∆n‖∞ ≥ C0σ

s0 log(dp)√
n

}
≤ 12p−c2 + exp(−c log(dp2)) + exp(−cn(1 ∧ ω−2)) , (42)

for some constants C,C0, c, c2 > 0, and ω given by (27). In particular

‖E{θ̂on − θ0}‖∞ ≤ 10Cσs0log(dp)/n .

We refer to Appendix B.3 for the proof of Theorem 3.7.

Assuming the quantities σ, CΣε,A are of order one, the theorem shows that the bias of the
online debiased estimator is of order LΣs0(log p)/

√
n. On the other hand, recall the filtration

Ft generated by {ε1, . . . , εt} and rewrite (36) as Wn =
∑

t vtεt, where vt = M (`)xt/
√
n (Sample

t belongs to episode ` + 1). As shown in Lemma 3.8 below, for each coordinate i ∈ [dp], the
conditional variance

∑n
t=1 E(ε2

t v
2
t,i|Ft−1) = (σ2/n)

∑n
t=1〈m`

a, zt〉2 is of order one. Hence ‖∆n‖∞ is
asymptotically dominated by the noise variance, in the regime that s0 = o(

√
n/(LΣ log(dp))).

We next proceed to characterize the distribution of the noise term Wn. To derive this, we
apply the martingale CLT (e.g., see [HH14, Corollary 3.2]) to show that the unbiased component
Wn admits a Gaussian limiting distribution. A key technical step for this end is to show that the
martingale sum Wn is stable in an appropriate sense.

Lemma 3.8. (Stability of martingale Wn) Let θ̂on be the debiased estimator (31) with µ` =
τ
√

(log p)/n` and L = LΣ, with LΣ defined by (38). Under Assumption 3.5(2), and for any
fixed sequence of integers a(n) ∈ [dp],2 we have

Vn,a ≡
σ2

n

K−2∑
`=0

∑
t∈E`+1

〈m`
a, xt〉2 = σ2Ωa,a + oP (1), (43)

with Ω ≡ Σ−1 the precision matrix. In addition, we have

max
{ 1√

n
|〈m`

a, xt〉εt| : ` ∈ [K − 2], t ∈ [n− 1]
}

= oP (1). (44)

We refer to Appendix B.4 for the proof of Lemma 3.8. With Lemma 3.8 in place, we can apply
a martingale central limit theorem [HH14, Corollary 3.2] to obtain the following result.

Corollary 3.9. Consider the VAR(d) model (21) for time series and let θ̂on be the debiased esti-
mator (31) with µ` = τ

√
(log p)/n` and L ≤ LΣ, with LΣ defined by (38). For an arbitrary but

fixed sequence of integers a(n) ∈ [dp], define the conditional variance Vn as

Vn,a ≡
σ2

n

K−2∑
`=0

∑
t∈E`+1

〈m`
a, xt〉2 .

2We index the sequence with the sample size n that is diverging. Since we are in high-dimensional setting p ≥ n
is also diverging.
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Under Assumption 3.5, for any fixed coordinate a ∈ [dp], and for all x ∈ R we have

lim
n→∞

P
{ Wn,a√

Vn,a
≤ x

}
= Φ(x) , (45)

where Φ is the standard Gaussian cdf.

For the task of statistical inference, Theorem 3.7 and Lemma 3.8 suggest to consider the scaled
residual

√
n(θ̂on

a − θ0,a)/(σ
√
Vn,a) as the test statistics. Our next proposition characterizes its

distribution. The proof is straightforward given the result of Theorem 3.7 and Corollary 3.9 and is
deferred to Appendix B.5. In its statement we omit explicit constants that can be easily derived
from Theorem 3.7.

Proposition 3.10. Consider the VAR(d) model (21) for time series and let θ̂on be the debiased
estimator (31) with µ` = τ

√
(log p)/n`, λ = λ0

√
log(dp)/n, L ≤ LΣ, with LΣ defined by (38) and

λ being the regularization parameter in the Lasso estimator θ̂L, for τ, λ0 large enough constants.

Suppose that Assumption 3.5 holds and s0 = o(
√
n/ log(dp)), then the following holds true for

any fixed sequence of integers a(n) ∈ [dp]. For all x ∈ R, we have

lim
n→∞

sup
‖θ0‖0≤s0

∣∣∣∣P{√n(θ̂on
a − θ0,a)√
Vn,a

≤ x
}
− Φ(x)

∣∣∣∣ = 0 . (46)

4 Statistical inference

An immediate use of distributional characterizations (20) or (46) is to construct confidence intervals
and also provide valid p-values for hypothesis testing regarding the model coefficients. Throughout,
we make the sparsity assumption s0 = o(

√
n/ log p0), with p0 the number of model parameters (for

the batched data collection setting p0 = p, and for the VAR(d) model p0 = dp).

Confidence intervals: For fixed coordinate a ∈ [p0] and significance level α ∈ (0, 1), we let

Ja(α) ≡ [θ̂on
a − δ(α, n), θ̂on

a + δ(α, n)] , (47)

δ(α, n) ≡ Φ−1(1− α/2)
√
Vn,a/n ,

where Vn,a is defined by Equation (19) for the batched data collection setting and by Equation
(43) for the VAR(d) model.

As a result of Proposition 3.10, the confidence interval Ja(α) is asymptotically valid because

lim
n→∞

P(θ0,a ∈ Ja(α)) = lim
n→∞

P
{√n(θ̂on

a − θ0,a)√
Vn,a/n

≤ Φ−1(1− α/2)
}

− lim
n→∞

P
{√n(θ̂on

a − θ0,a)√
Vn,an

≤ Φ−1(1− α/2)
}

= Φ(Φ−1(1− α/2))− Φ(−Φ−1(1− α/2)) = 1− α .

(48)

Further, note that the length of confidence interval Ja(α) is of orderO(σ/
√
n) (using Lemma A.9

for the batched data collection setting and Lemma 3.8 for the time series). It is worth noting
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that this is the minimax optimal rate [JM14b, Jav14] and is of the same order of the length
of confidence intervals obtained by the least-square estimator for the classical regime n > p
with i.i.d samples.

Hypothesis testing: Another consequence of Proposition 3.10 is that it allows for testing hy-
pothesis of form H0 : θ0,a = 0 versus the alternative HA : θ0,a 6= 0 and provide valid p-values.
Recall that θ0 denotes the model parameters, either for the batched data collection setting

or the VAR(d) model (which encodes the entries A
(`)
i,j in model (21)). Such testing mecha-

nism is of crucial importance in practice as it allows to diagnose the significantly relevant
covariates to the outcome. In case of time series, it translates to understanding the effect of
a covariate zt−`,j on a covariate zt,i, and to provide valid statistical measures (p-values) for
such associations. We construct two-sided p-values for testing H0, using our test statistic as
follows:

Pa = 2

(
1− Φ

(√
n|θ̂on

a |√
Vn,a

))
. (49)

Our testing (rejection) rule given the p-value Pa is:

R(a) =

{
1 if Pa ≤ α (reject H0) ,

0 otherwise (fail to reject H0) .
(50)

Employing the distributional characterizations (20) or (46), it is easy to verify that the con-
structed p-value Pa is valid in the sense that under the null hypothesis it admits a uniform
distribution: Pθ0,a=0(Pa ≤ u) = u for all u ∈ [0, 1].

Group inference In many applications, one may want to do inference for a group of model pa-
rameters, θ0,G ≡ (θ0,a)a∈G simultaneously, rather than the individual inference. This is the
case particularly, when the model covariates are highly correlated with each other or they are
likely to affect the outcome (in time series application, the future covariate vectors) jointly.

To address group inference, we focus on the time series setting. The setting of batched
data collection can be handled in a similar way. We first state a simple generalization of
Proposition 3.10 to a group of coordinates with finite size as n, p → ∞. The proof is very
similar to the proof of Proposition 3.10 and is omitted.

Lemma 4.1. Let G = G(n) be a sequence of sets G(n) ⊂ [dp] with |G(n)| = k fixed as
n, p → ∞. Also, let the conditional variance Vn ∈ Rdp×dp be defined by (43) for the VAR(d)
model, that is:

Vn ≡
σ2

n

K−2∑
`=0

∑
t∈E`+1

(M (`)xt)(M
(`)xt)

T . (51)

Under the assumptions of Proposition 3.10, for all u = (u1, . . . , uk) ∈ Rk we have

lim
n→∞

∣∣∣∣P{√n(Vn,G)−1/2(θ̂on
G − θ0,G) ≤ u

}
− Φk(u)

∣∣∣∣ = 0 , (52)

where Vn,G ∈ Rk×k is the submatrix obtained by restricting Vn to the rows and columns in G.
Here (a1, . . . , ak) ≤ (b1, . . . , bk) indicates that ai ≤ bi for i ∈ [k] and Φk(u) = Φ(u1) . . .Φk(u).
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Much in the same way as individual inference, we can use Lemma 4.1 for simultaneous infer-
ence on a group of parameters. Concretely, let Sk,α ⊆ Rk be any Borel set with k-dimensional
Gaussian measure at least 1− α. Then for a group G ⊂ [dp], with size |G| = k, we construct
the confidence set JG(α) ⊆ Rk as follows

JG(α) ≡ θ̂on
G + (Vn,R)1/2Sk,α . (53)

Then, using Lemma 4.1 (along the same lines in deriving (48)), we conclude that JG(α) is a
valid confidence region, namely

lim
n→∞

P(θ0,G ∈ JG(α)) = 1− α . (54)

5 Numerical experiments

In this section, we evaluate the performance of online debiasing framework on synthetic data.
Consider the VAR(d) time series model (21). In the first setting, we let p = 20, d = 3, T = 50
and construct the covariance matrix of noise terms Σζ by putting 1 on its diagonal and ρ = 0.3
on its off-diagonal. To make it closer to the practice, instead of considering sparse coefficient
matrices , we work with approximately sparse matrices. Specifically, the entries of A(i) are generated
independently from a Bernoulli distribution with success probability q = 0.1, multiplied by b ·
Unif({+1,−1}) with b = 0.1, and then added to a Gaussian matrix with mean 0 and standard error
1/p. In formula, each entry is generated independently from

b · Bern(q) ·Unif({+1,−1}) +N (0, 1/p2) .

We used r0 = 6 (length of first episode E0) and β = 1.3 for lengths of other episodes E` ∼ β`. For

each i ∈ [p] we do the following. Let θ0 = (A
(1)
i , A

(2)
i , . . . , A

(d)
i )T ∈ Rdp encode the ith rows of the

matrices A(`) and compute the noise component of θ̂on as

Wn ≡
1√
n

K−2∑
`=0

M (`)
( ∑
t∈E`+1

xtεt

)
, (55)

and rescaled residual Tn ∈ Rdp with Tn,a =
√

n
Vn,a

(θ̂on
a − θ0,a) and Vn,a given by Equation (43)

and σ = 1. Left and right plots of Figure 4 denote the QQ-plot, PP-plot and histogram of noise
terms and rescaled residuals of all coordinates (across all i ∈ [p] and a ∈ [dp]) stacked together,
respectively.

True and False Positive Rates. Consider the linear time-series model (21) with A(i) matrices
having entries drawn independently from the distribution b · Bern(q) · Unif({+1,−1}) and noise
terms be gaussian with covariance matrix Σζ . In this example, we evaluate the performance of our
proposed online debiasing method for constructing confidence intervals and hypothesis testing as
discussed in Section 4. We consider four metrics: True Positive Rate (TPR) , False Positive Rate
(FPR), Average length of confidence intervals (Avg CI length), and coverage rate of confidence
intervals. Tables 1 and 2 summarize the results for various configurations of the Var(d) processes
and significance level α = 0.05. Table 1 corresponds to the cases where noise covariance has the
structure Σζ(i, j) = 0.1|i−j| and Table 2 corresponds to the case of Σζ(i, j) = 0.1I(i 6=j). The reported
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Figure 4: A simple example of an online debiased Var(3) process with dimension p = 20 and T = 50 sample
data points. Plots 4a, 4c, 4e demonstrate respectively the histogram, QQ-plot, and PP plot of noise values of
all dp2 = 1200 entries of Ai matrices in linear time series model (21). Plots 4b, 4d, 4f are histogram, QQ-plot,
and PP-plot of rescaled residuals of all coordinates as well. Alignment of data points in these plots with
their corresponding standard normal (0, 1) line corroborates our theoretical results on the asymptotic normal
behavior of noise terms and rescaled residuals discussed in corollary 3.9 and proposition 3.10, respectively.
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Table 1: Evaluation of the online debiasing approach for statistical inference on the coefficients of a VAR(d)
model under different configurations. Here the noise terms ζi are gaussian with covariance matrix Σζ(i, j) =
0.1|i−j|. The results are reported in terms of four metrics: FPR (False Positive Rate), TPR (True Positive
Rate), Coverage rate and Average length of confidence intervals (Avg CI length) at significance level α = 0.05

XXXXXXXXXXXd
Parameters

p T q b FPR TPR Avg CI length Coverage rate

d = 1
40 30 0.01 2 0.0276 1 3.56 0.9725
35 30 0.01 2 0.0354 0.9166 3.7090 0.9648
60 55 0.01 0.9 0.0314 0.7058 2.5933 0.9686

d = 2
55 100 0.01 0.8 0.0424 0.8000 1.9822 0.9572
40 75 0.01 0.9 0.0343 0.9166 2.5166 0.9656
50 95 0.01 0.7 0.0368 0.6182 2.4694 0.963

d = 3
45 130 0.005 0.9 0.0370 0.6858 2.070 0.9632
40 110 0.01 0.7 0.0374 0.6512 2.1481 0.9623
50 145 0.005 0.85 0.0369 0.6327 2.2028 0.9631

measures for each configuration (each row of the table) are average over 20 different realizations of
the VAR(d) model.

Table 2: Evaluation of the online debiasing approach for statistical inference on the coefficients of a VAR(d)
model under different configurations. Here the noise terms ζi are gaussian with covariance matrix Σζ(i, j) =
0.1I(i 6=j). The results are reported in terms of four metrics: FPR (False Positive Rate), TPR (True Positive
Rate), Coverage rate and Average length of confidence intervals (Avg CI length) at significance level α = 0.05

XXXXXXXXXXXd
Parameters

p T q b FPR TPR Avg CI length Coverage rate

d = 1
40 30 0.01 2 0.0402 1 3.5835 0.96
40 35 0.02 1.2 0.0414 0.8125 2.6081 0.9575
50 40 0.015 0.9 0.0365 0.7435 2.0404 0.9632

d = 2
35 65 0.01 0.9 0.0420 0.8077 2.4386 0.9580
45 85 0.01 0.9 0.0336 0.7298 2.5358 0.9655
50 70 0.01 0.95 0.0220 0.8333 2.4504 0.9775

d = 3
40 115 0.01 0.9 0.0395 0.7906 1.6978 0.9598
45 130 0.005 0.95 0.0359 0.7714 2.1548 0.9641
50 145 0.005 0.85 0.0371 0.5918 2.1303 0.9624

5.1 Real data experiments: a marketing application

Retailers often offer sales of various categories of products and for an effective management of the
business, they need to understand the cross-category effect of products on each other, e.g., how
does price, promotion or sale of category A will effect the sales of category B after some time.

We used data of sales, prices and promotions of Chicago-area grocery store chain Dominick’s
that can be found publicly from https://research.chicagobooth.edu/kilts/marketing-databases/

dominicks. The same data set has been used in [WBBM17] where a VARX model is employed to

26

https://research.chicagobooth.edu/kilts/marketing-databases/dominicks
https://research.chicagobooth.edu/kilts/marketing-databases/dominicks


estimate the demand effects. In this experiment, we use the proposed online debiasing approach to
provide p-values for the cross-category effects.

We consider 25 categories of products over 71 weeks, so for each week i, we have information
xi for sales, prices and promotions of 25 categories (as no promotion was considered for cigarette
during our observed time interval, xi’s have dimension 74). For more details regarding calculating
sales, prices and promotions see [SPHD04] and [GWC16]. We consider VAR(1) and VAR(2) models
as generating process for covariates xi and then apply our proposed online debiasing method to
calculate p-values (see Eq. (49)) for the null hypothesis of form H0 : θ0,a = 0 with θ0,a an entry in
the VAR models as discussed earlier in Section 4. We refer to Appendix E for the reports of the
p-values. Here we highlight some of the significant associations using VAR(2) model: promotion of
soaps on sales of dish-detergent after one week with p-value = 0.0011; promotion of shampoos on
sales of laundry detergent after one week with p-value = 0.0093; promotion of front-end candies on
sales of soft drinks after one week with p-val = 0.0257.

6 Implementation and extensions

6.1 Iterative schemes to implement online debiasing

The online debiased estimator (31) involves the decorrelating matrices M (`), whose rows (m`
a)a∈[dp]

are constructed by the optimization (29). For the sake of computational efficiently, it is useful to
work with a Lagrangian equivalent version of this optimization. Consider the following optimization

minimize‖m‖1≤L
1

2
mTΣ̂(`)m− 〈m, ea〉+ µ`‖m‖1 , (56)

with µ` and L taking the same values as in Optimization (29).

The next result, from [Jav14, Chapter 5] is on the connection between the solutions of the
unconstrained problem (56) and (29). For the reader’s convenience, the proof is also given in
Appendix C.1.

Lemma 6.1. A solution of optimization (56) is also a solution of the optimization problem (29).
Also, if problem (29) is feasible then problem (56) has bounded solution.

Using the above lemma, we can instead work with the Lagrangian version (56) for constructing
the decorrelating vector m`

a.

Here, we propose to solve optimization problem (56) using iterative method. Note the objective
function evolves slightly at each episode and hence we expect the solutions m`

a and m`+1
a to be close

to each other. An appealing property of iterative methods is that we can leverage this observation
by setting m`

a as the initialization for the iterations that compute m`+1
a , yielding shorter convergence

time. In the sequel we discuss two of such iterative schemes.

6.1.1 Coordinate descent algorithms

In this method, at each iteration we update one of the coordinates of m, say mj , while fixing
the other coordinates. We write the objective function of (56) by separating mj from the other

27



coordinates:

1

2
Σ̂

(`)
j,jm

2
j +

∑
r,s 6=j

Σ̂(`)
r,s mrms −ma + µ`‖m∼j‖1 + µ`|mj | , (57)

where Σ̂
(`)
j,∼j denotes the jth row (column) of Σ̂(`) with Σ̂

(`)
j,j removed. Likewise, m∼j represents the

restriction of m to coordinates other than j. Minimizing (57) with respect to mj gives

mj +
1

Σ̂
(`)
j,j

(
Σ̂

(`)
j,∼jm∼j − I(a = j) + µ` sign(mj)

)
= 0 .

It is easy to verify that the solution of the above is given by

mj =
1

Σ̂
(`)
j,j

η
(
− Σ̂

(`)
j,∼jm∼j + I(a = j);µ`

)
, (58)

with η(·; ·) : R× R+ → R denoting the soft-thresholding function defined as

η(z, µ) =


z − µ if z > µ ,

0 if − µ ≤ z ≤ µ ,
z + µ otherwise .

(59)

For a vector u, η(u;µ) is perceived entry-wise.

This brings us to the following update rule to compute m`
a ∈ Rdp (solution of (56)). Th

notation ΠL, in line 5 below, denotes the Euclidean projection onto the `1 ball of radius L and can
be computed in O(dp) times using the procedure of [DSSSC08].

1: (initialization): m(0)← m
(`−1)
a

2: for iteration h = 1, . . . ,H do
3: for j = 1, 2, . . . , dp do

4: mj(h)← 1

Σ̂
(`)
j,j

η
(
− Σ̂

(`)
j,∼jm∼j(h− 1) + I(a = j);µ`

)
5: m(h)← ΠL(m(h))
6: return m`

a ← m(H)

In our experiments we implemented the same coordinate descent iterations explained above to
solve for the decorrelating vectors m`

a.

6.1.2 Gradient descent algorithms

Letting L(m) = (1/2)mTΣ̂(`)m − 〈m, ea〉, we can write the objective of (56) as L(m) + µ`‖m‖1.
Projected gradient descent, applied to this constrained objective, results in a sequence of iterates
m(h), with h = 0, 1, 2, . . . the iteration number, as follows:

m(h+ 1) = arg min
‖m‖1≤L

{
L(m(h)) + 〈∇L(m(h)),m−m(h)〉

+
η

2
‖m−m(h)‖22 + µ`‖m‖1

}
. (60)
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In words, the next iterate m(h+1) is obtained by constrained minimization of a first order approx-
imation to L(m), combined with a smoothing term that keeps the next iterate close to the current
one. Since the objective function is convex (Σ̂(`) � 0), iterates (60) are guaranteed to converge to
the global minimum of (56).

Plugging for L(m) and dropping the constant term L(m(h)), update (60) reads as

m(h+ 1) = arg min
‖m‖1≤L

{
〈Σ̂(`)m(h)− ea,m−m(h)〉+

η

2
‖m−m(h)‖22 + µ`‖m‖1

}
= arg min

‖m‖1≤L

{η
2

(
m−m(h) +

1

η
(Σ̂(`)m(h)− ea)

)2
+ µ`‖m‖1

}
. (61)

To compute the update (61), we first solve the unconstrained problem which has a closed form

solution given by η
(
m(h) − 1

η (Σ̂(`)m(h) − ea); µ`η
)

, with η the soft thresholding function given by

(59). The solution is then projected onto the ball of radius L.

In the following box, we summarize the projected gradient descent update rule for constructing
the decorrelating vectors m`

a.

1: (initialization): m(0)← m
(`−1)
a

2: for iteration h = 1, . . . ,H do

3: m(h)← η
(
m(h)− 1

η (Σ̂(`)m(h)− ea); µ`η
)

4: m(h)← ΠL(m(h))
5: return m`

a ← m(H)

6.2 Sparse inverse covariance

In Section 3.1 (Figure 3) we provided a numerical example wherein the offline debiasing does not
admit an asymptotically normal distribution. As we see from the heat map in Figure 2b, the
precision matrix Ω has ∼ 20% non-negligible entries per row. The goal of this section is to show
that when Ω is sufficiently sparse, the offline debiased estimator has an asymptotically normal
distribution and can be used for valid inference on model parameters.

The idea is to show that the decorrelating matrix M is sufficiently close to the precision matrix
Ω. Since Ω is deterministic, this helps with controlling the statistical dependence between M and
ε. Formally, starting from the decomposition (5) we write

θ̂off = θ0 + (I −M Σ̂(K−1))(θ̂L − θ0) +
1

n
MXTε

= θ0 + (I −M Σ̂(K−1))(θ̂L − θ0) +
1

n
(M − Ω)XTε+

1

n
ΩXTε , (62)

where we recall that Σ̂(K−1) is the empirical covariance of all the covariate vectors (episodes
E0, . . . , EK−1). Therefore, we can write

√
n(θ̂off − θ0) = ∆1 + ∆2 +

1√
n

ΩXTε ,

∆1 =
√
n(I −M Σ̂(K−1))(θ̂L − θ0) ,

∆2 =
1√
n

(M − Ω)XTε .

(63)
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The term ΩXTε/
√
n is gaussian with O(1) variance at each coordinate. For bias term ∆1, we show

that ∆1 = O(s0(log p)/
√
n) by controlling |I −M Σ̂(K−1)|. To bound the bias term ∆2 we write

‖∆2‖∞ ≤
(

max
i∈[p]
‖(M − Ω)ei‖1

)(
1√
n
‖XTε‖∞

)
. (64)

By using [BM+15, Proposition 3.2], we have ‖XTε‖∞/
√
n = OP (

√
log(dp)). Therefore, to bound

∆2 we need to control M − Ω (in the maximum `1 distance of the rows). We provide such bound
in our next lemma, under the sparsity assumption on the rows of Ω.

Define
sΩ ≡ max

i∈[dp]

∣∣∣j ∈ [dp] : Ωi,j 6= 0
∣∣∣ ,

the maximum sparsity of rows of Ω. In addition, let the (offline) decorrelating vectors ma be defined
as follows, for a ∈ [dp]:

ma ∈ arg min
m∈Rdp

1

2
mTΣ̂(K−1)m− 〈m, ea〉+ µn‖m‖1 . (65)

Lemma 6.2. Consider the decorrelating vectors ma, a ∈ [dp], given by optimization (65) with

µn = 2τ

√
log(dp)
n . Then, for some proper constant c > 0 and the sample size condition n ≥ 32α(ω2∨

1)sΩ log(dp), the following happens with probability at least 1−exp(−c log(dp2))−exp(−cn(1∧ω−2)):

max
i∈[dp]

‖ma − Ωea‖1 ≤
192τ

α
sΩ

√
log(dp)

n
,

where αand ω are defined in Proposition 3.3.

The proof of Lemma 6.2 is deferred to Section C.2.

By employing this lemma, if Ω is sufficiently sparse, that is sΩ = o(
√
n/ log(dp)), then the

bias term ‖∆2‖∞ also vanishes asymptotically and the (offline) debiased estimator θ̂off admits
an unbiased normal distribution. We formalize such distributional characterization in the next
theorem.

Theorem 6.3. Consider the VAR(d) model (21) for time series and let θ̂off be the (offline) debiased
estimator (4), with the decorrelating matrix M = (m1, . . . ,mdp)

T ∈ Rdp×dp constructed as in (65),
with µn = 2τ

√
(log p)/n. Also, let λ = λ0

√
log(dp)/n be the regularization parameter in the Lasso

estimator θ̂L, with τ, λ0 large enough constants.

Suppose that s0 = o(
√
n/ log(dp)) and sΩ = o(

√
n/ log(dp)), then the following holds true for

any fixed sequence of integers a(n) ∈ [dp]: For all x ∈ R, we have

lim
n→∞

sup
‖θ0‖0≤s0

∣∣∣∣P
{√

n(θ̂off
a − θ0,a)√
Vn,a

≤ x

}
− Φ(x)

∣∣∣∣ = 0 , (66)

where Vn,a ≡ σ2(M Σ̂(n)MT)a,a.

We refer to Section C.3 for the proof of Theorem 6.3.
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A Numerical Example. Consider a VAR(d) model with parameters p = 25, d = 3, T = 70,
and Gaussian noise terms with covariance matrix Σζ satisfying Σζ(i, j) = ρ|i−j| for ρ = 0.1. Let
Ai matrices have entries generated independently from b · Bern(q).Unif({+1,−1}) formula with
parameters b = 0.15, q = 0.05. Figure 5a shows the magnitudes of entries of elements of sparse
precision matrix Ω = E(xix

T
i )−1. Figures 5b, 5c, and 5d demonstrate normality of rescaled residuals

of offline debiased estimator built by decorrelating matrix M with rows coming from optimization
described in (65).

After this paper was posted, we learned of simultaneous work (an updated version of [BDMP17])
that also studies the performance of the (offline) debiased estimator for time series with sparse
precisions. We would like to highlight some of differences between the two papers: 1) [BDMP17]
considers decorrelating matrix M constructed by an optimization of form (29), using the entire
sample covariance Σ̂(K−1), while we work with the Lagrangian equivalent (65). 2) [BDMP17]
considers VAR(1) model, while we work with VAR(d) models. 3) [BDMP17] assumes a stronger
notion of sparsity, viz. the sparsity of the entire precision matrix as well as the transition matrix
to scale as o(

√
n/ log p). Our results only require the row-wise sparsity of the precision matrix to

scale as o(
√
n/ log p), cf. Theorem 6.3.

6.3 Concluding remarks

In this work we devised the ‘online debiasing’ approach for the high-dimensional regression and
showed that it asymptotically admits an unbiased Gaussian distribution, even when the samples
are collected adaptively. Also through numerical examples we demonstrated that the (offline)
debiased estimator suffers from the bias induced by the correlation in the samples and cannot
be used for valid statistical inference in these settings (unless the precision matrix is sufficiently
sparse).

Since its proposal, the (offline) debiasing approach has been used as a tool to address a
variety of problems such as estimating average treatment effect and casual inference in high-
dimension [AIW16], precision matrix estimation [JvdG17], distributed multitask learning, and
studying neuronal functional network dynamics [SML+18], hierarchical testing [GRBC19], to name
a few. It has also been used for different statistical aims such as controlling FDR in high-
dimensions [JJ+19], estimation of the prediction risk [JM18], inference on predictions [CG17, JL17]
and explained variance [CG18, JL17], to testing more general hypotheses regarding the model pa-
rameters, like testing membership in a convex cone, testing the parameter strength, and testing
arbitrary functions of the parameters [JL17]. We anticipate that the online debiasing approach and
analysis can be used to tackle similar problems under adaptive data collection. We leave this for
future work.
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Figure 5: A Simple example of a VAR(d) process with parameters p = 25, d = 3, T = 70, and noise term
covariance matrix Σζ s.t Σζ(i, j) = ρ|i−j| with ρ = 0.1. Ai matrices have independent elements coming from
b · Bern(q).Unif({+1,−1}) formula with b = 0.15, q = 0.05. Normality of rescaled residuals (figures 5b, 5c,
and 5d) validates the successful performance of offline debiasing estimator under sparsity of precision matrix
Ω ( figure 5a) as we discussed in theorem 6.3.
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[JvdG17] Jana Janková and Sara van de Geer, Honest confidence regions and optimality in
high-dimensional precision matrix estimation, Test 26 (2017), no. 1, 143–162. 31

[KHW+11] Edward S Kim, Roy S Herbst, Ignacio I Wistuba, J Jack Lee, George R Blumenschein,
Anne Tsao, David J Stewart, Marshall E Hicks, Jeremy Erasmus, Sanjay Gupta,
et al., The battle trial: personalizing therapy for lung cancer, Cancer discovery 1
(2011), no. 1, 44–53. 5

34



[LR85] Tze Leung Lai and Herbert Robbins, Asymptotically efficient adaptive allocation
rules, Advances in applied mathematics 6 (1985), no. 1, 4–22. 5

[LW82] Tze Leung Lai and Ching Zong Wei, Least squares estimates in stochastic regression
models with applications to identification and control of dynamic systems, The Annals
of Statistics (1982), 154–166. 2, 14

[LW12] Po-Ling Loh and Martin J. Wainwright, High-dimensional regression with noisy and
missing data: Provable guarantees with nonconvexity, Ann. Statist. 40 (2012), no. 3,
1637–1664. 16

[NXTZ17] Xinkun Nie, Tian Xiaoying, Jonathan Taylor, and James Zou, Why adaptively col-
lected data have negative bias and how to correct for it. 2

[PRC+16] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, Erik Snowberg, et al., Batched
bandit problems, The Annals of Statistics 44 (2016), no. 2, 660–681. 5

[RT10] Paat Rusmevichientong and John N Tsitsiklis, Linearly parameterized bandits, Math-
ematics of Operations Research 35 (2010), no. 2, 395–411. 5

[SBB15] Anil K Seth, Adam B Barrett, and Lionel Barnett, Granger causality analysis in
neuroscience and neuroimaging, Journal of Neuroscience 35 (2015), no. 8, 3293–
3297. 13

[SML+18] Alireza Sheikhattar, Sina Miran, Ji Liu, Jonathan B Fritz, Shihab A Shamma,
Patrick O Kanold, and Behtash Babadi, Extracting neuronal functional network dy-
namics via adaptive granger causality analysis, Proceedings of the National Academy
of Sciences 115 (2018), no. 17, E3869–E3878. 31

[SPHD04] Shuba Srinivasan, Koen Pauwels, Dominique M Hanssens, and Marnik G Dekimpe,
Do promotions benefit manufacturers, retailers, or both?, Management Science 50
(2004), no. 5, 617–629. 27

[SRR19] Jaehyeok Shin, Aaditya Ramdas, and Alessandro Rinaldo, On the bias, risk and
consistency of sample means in multi-armed bandits, arXiv preprint arXiv:1902.00746
(2019). 2

[SS06] Robert H Shumway and David S Stoffer, Time series analysis and its applications:
with r examples, Springer Science & Business Media, 2006. 13, 14

[SW01] James H Stock and Mark W Watson, Vector autoregressions, Journal of Economic
perspectives 15 (2001), no. 4, 101–115. 13

[SZ12] Tingni Sun and Cun-Hui Zhang, Scaled sparse linear regression, Biometrika 99
(2012), no. 4, 879–898. 6

[Tib96] R. Tibshirani, Regression shrinkage and selection with the Lasso, J. Royal. Statist.
Soc B 58 (1996), 267–288. 2

[VBW15] Sofia Villar, Jack Bowden, and James Wason, Multi-armed bandit models for the
optimal design of clinical trials: benefits and challenges, Statistical science: a review
journal of the Institute of Mathematical Statistics 30 (2015), no. 2, 199. 2

35
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A Proofs of Section 2

A.1 Proof of Theorem 2.2

The important technical step is to prove that, under the conditions specified in Theorem 2.2, the
sample covariance Σ̂ = (1/n)

∑
i xix

T
i is (φ0/4, supp(θ0)) compatible.

Proposition A.1. With probability exceeding 1− p−4 the sample covariance Σ̂ is (φ0/4, supp(θ0))
compatible when n1 ∨ n2 ≥ 232(κ4/φ2

0)s2
0 log p, for an absolute constant C.

Let Σ̂(1) and Σ̂(2) denote the sample covariances of each batch, i.e. Σ̂(1) = (1/n1)
∑

i≤n1
xix

T
i and

similarly Σ̂(2) = (1/n2)
∑

i>n1
xix

T
i . We also let Σ(2) be the conditional covariance Σ(2) = Σ(2)(θ̂1) =

E{xxT|〈x, θ̂1〉 ≥ ς}. We first prove that at least one of the sample covariances Σ̂(1) and Σ̂(2)

closely approximate their population counterparts, and that this implies they are (φ0/2, supp(θ0))-
compatible.

Lemma A.2. With probability at least 1− p−4

‖Σ̂(1) − Σ‖∞ ∧ ‖Σ̂(2) − Σ(2)‖∞ ≤ 12κ2

√
log p

n
,

Proof. Since n = n1 + n2 ≤ 2 max(n1, n2), at least one of n1 and n2 exceeds n/2. We assume that
n2 ≥ n/2, and prove that ‖Σ̂(2) − Σ(2)‖∞ satisfies the bound in the claim. The case n1 ≥ n/2 is
similar. Since we are proving the case n2 ≥ n/2, for notational convenience, we assume probabilities
and expectations in the rest of the proof are conditional on the first batch (y1, x1), . . . (yn1 , xn1),
and omit this in the notation.

For a fixed pair (a, b) ∈ [p]× [p]:

Σ̂
(2)
a,b − Σ

(2)
a,b =

1

n2

∑
i>n1

xi,axi,b − E{xi,axi,b}

Using Lemma D.4 we have that ‖xi,axi,b‖ψ1 ≤ 2‖xi‖2ψ2
≤ 2κ2 almost surely. Then using the tail

inequality Lemma D.5 we have for any ε ≤ 2eκ2

P
{
|Σ̂(2)
a,b − Σ

(2)
a,b| ≥ ε

}
≤ 2 exp

{
− n2ε

2

6eκ4

}
With ε = ε(p, n2, κ) = 12κ2

√
log p/n2 ≤ 20κ2

√
log p/n we have that P{|Σ̂(2)

a,b − Σ
(2)
a,b| ≥ ε(p, n2, κ)} ≤

p−8, whence the claim follows by union bound over pairs (a, b).

Lemma A.3 ([BVDG11, Corollary 6.8]). Suppose that Σ is (φ0, S)-compatible. Then any matrix
Σ′ such that ‖Σ′ − Σ‖∞ ≤ φ0/(32|S|) is (φ0/2, S)-compatible.

We can now prove Proposition A.1.

37



Proof of Proposition A.1. Combining Lemmas A.2 and A.3 yields that, with probability 1 − p−4,
at least one of Σ̂(1) and Σ̂(2) are (φ0/2, supp(θ0))-compatible provided

12κ2

√
log p

n
≤ φ0

32s0
,

which is implied by n ≥
(400κ2s0

φ0

√
log p

)2
.

Since Σ̂ = (n1/n)Σ̂(1) + (n2/n)Σ̂(2) and at least one of n1/n and n2/n exceed 1/2, this implies that
Σ̂ is (φ0/4, supp(θ0))-compatible with probability exceeding 1− p−4.

The following lemma shows that XTε is small entrywise.

Lemma A.4. For any λn ≥ 40κσ
√

(log p)/n, with probability at least 1− p−4, ‖XTε‖∞ ≤ nλn/2.

Proof. The ath coordinate of the vector XTε is
∑

i xiaεi. As the rows of X are uniformly κ-
subgaussian and ‖εi‖ψ2 = σ, Lemma D.4 implies that the sequence (xiaεi)1≤i≤n is uniformly 2κσ-
subexponential. Applying the Bernstein-type martingale tail bound Lemma D.6, for ε ≤ 12eκσ:

P
{∣∣∣∑

i

xiaεi

∣∣∣ ≥ εn} ≤ 2 exp
{
− nε2

24eκ2σ2

}
Set ε = ε(p, n, κ, σ) = 20κσ

√
(log p)/n, the exponent on the right hand side above is at least 5 log p,

which implies after union bound over a that

P{‖XTε‖∞ ≥ εn} = P
{

max
a

∣∣∣∑
i

xiaεi

∣∣∣ ≥ εn}
≤
∑
a

P
{∣∣∣∑

i

xiaεi

∣∣∣ ≥ εn}
≤ 2p−6.

This implies the claim for p large enough.

The rest of the proof is standard, cf. [HTW15] and is given below for the reader’s convenience.

Proof of Theorem 2.2. Throughout we condition on the intersection of good events in Proposition
A.1 and Lemma A.4, which happens with probability at least 1 − 2p−4. On this good event, the
sample covariance Σ̂ is (φ0/4, supp(θ0))-compatible and ‖XTε‖∞ ≤ 20κσ

√
n log p ≤ nλn/2.

By optimality of θ̂L:

1

2
‖y −Xθ̂L‖2 + λn‖θ̂L‖1 ≤

1

2
‖y −Xθ0‖2 + λn‖θ0‖1.

Using y = Xθ0 + ε, the shorthand ν = θ̂L − θ0 and expanding the squares leads to

1

2
〈ν, Σ̂ν〉 ≤ 1

n
〈XTε, ν〉+ λn(‖θ0‖1 − ‖θ̂L‖1)

≤ 1

n
‖ν‖1‖XTε‖∞ + λn(‖θ0‖1 − ‖θ̂L‖1)

≤ λn
{1

2
‖ν‖1 + ‖θ0‖1 − ‖θ̂L‖1

}
. (67)
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First we show that the error vector ν satisfies ‖νSc0‖1 ≤ 3‖νS0‖1, where S0 ≡ supp(θ0). Note that

‖θ̂L‖1 = ‖θ0 + ν‖1 = ‖θ0 + νS0‖1 + ‖νSc0‖1. By triangle inequality, therefore:

‖θ0‖1 − ‖θ̂L‖1 = ‖θ0‖1 − ‖θ0 + νS0‖1 − ‖νSc0‖1
≤ ‖νS0‖1 − ‖νSc0‖1.

Combining this with the basic lasso inequality Eq.(67) we obtain

1

2
〈ν, Σ̂ν〉 ≤ λn

{1

2
‖ν‖1 + ‖νS0‖1 − ‖νSc0‖1

}
=
λn
2

{
3‖νS0‖1 − ‖νSc0‖.

}
As Σ̂ is positive-semidefinite, the LHS above is non-negative, which implies ‖νSc0‖1 ≤ 3‖νS0‖1. Now,

we can use the fact that Σ̂ is (φ0/4, S0)-compatible to lower bound the LHS by ‖ν‖21φ0/2s0. This
leads to

φ0‖ν‖21
2s0

≤ 3λn‖νS0‖1
2

≤ 3λn‖ν‖1
2

.

Simplifying this results in ‖ν‖1 = ‖θ̂L − θ0‖1 ≤ 3s0λn/φ0 as required.

A.2 Bias control: Proof of Theorem 2.8

Recall the decomposition (12) from which we obtain:

∆n = Bn(θ̂L − θ0),

Bn =
√
n
(
Ip −

n1

n
M (1)Σ̂(1) − n2

n
M (2)Σ̂(2)

)
,

Wn =
1√
n

∑
i≤n1

M (1)xiεi +
1√
n

∑
n1<i≤n

M (2)xiεi.

By construction M (1) is a function of X1 and hence is independent of ε1, . . . , εn1 . In addition, M (2)

is independent of εn1+1, . . . , εn. Therefore E{Wn} = 0 as required. The key is to show the bound
on ‖∆n‖∞. We start by using Hölder inequality

‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1.

Since the `1 error of θ̂L is bounded in Theorem 2.2, we need only to show the bound on Bn. For this,
we use triangle inequality and that M (1) and M (2) are feasible for the online debiasing program:

‖Bn‖∞ =
√
n
∥∥∥n1

n
(Ip −M (1)Σ̂(1)) +

n2

n
(Ip −M (2)Σ̂(2))

∥∥∥
∞

≤
√
n
(n1

n
‖Ip −M (1)Σ̂(1)‖∞ +

n2

n
‖Ip −M (2)Σ̂(2)‖∞

)
≤
√
n
(n1µ1

n
+
n2µ2

n

)
.

The following lemma shows that, with high probability, we can take µ1, µ2 so that the resulting
bound on Bn is of order

√
log p.
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Lemma A.5. Denote by Ω = (E{xxT})−1 and Ω(2)(θ̂) = (E{xxT|〈x, θ̂〉 ≥ ς})−1 be the population
precision matrices for the first and second batches. Suppose that n1 ∧ n2 ≥ 2Λ0/κ

2 log p. Then,
with probability at least 1− p−4

‖Ip − ΩΣ̂(1)‖∞ ≤ 15κΛ0
−1/2

√
log p

n1
,

‖Ip − Ω(2)Σ̂(2)‖∞ ≤ 15κΛ0
−1/2

√
log p

n2
.

In particular, with the same probability, the online debiasing program (10) is feasible with µ` =
15κ2Λ0

−1
√

(log p)/n` < 1/2.

It follows from the lemma, Theorem 2.2 and the previous display that, with probability at least
1− 2p−3

‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1

≤ 15κΛ
−1/2
0

√
n
(n1

n

√
log p

n1
+
n2

n

√
log p

n2

)
· 120κσφ−1

0 s0

√
log p

n
,

≤ 2000
κ2σ√
Λ0φ0

s0 log p

n
(
√
n1 +

√
n2)

≤ 4000
κ2σ√
Λ0φ0

s0 log p√
n

. (68)

This implies the first claim that, with probability rapidly converging to one, ∆n/
√
n is of order

s0 log p/n.

We should also expect ‖E{θ̂on − θ0}‖∞ to be of the same order. To prove this, however, we
need some control (if only rough) on θ̂on in the exceptional case when the LASSO error is large or
the online debiasing program is infeasible. Let G1 denote the good event of Lemma A.4 and G2

denote the good event of Theorem 2.2 as below:

G1 =

{
For ` = 1, 2 : ‖Ip − Ω(`)Σ̂(`)‖∞ ≤ 15κΛ0

−1/2

√
log p

n`

}
,

G2 =
{
‖θ̂L − θ0‖1 ≤

3s0λn
φ0

=
120κσ

φ0
s0

√
log p

n
.
}
.

On the intersection G = G1 ∩ G2, ∆n satisfies the bound (68). For the complement: we will use
the following rough bound on the LASSO error:

Lemma A.6 (Rough bound on LASSO error). For LASSO estimate θ̂L with regularization λn the
following bound holds:

‖θ̂L − θ0‖1 ≤
‖ε‖2

2nλn
+ 2‖θ0‖1 .
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Now, since Wn is unbiased:

‖E{θ̂on − θ0}‖∞ =
∥∥∥E{∆n}√

n

∥∥∥
∞

=
∥∥∥E{∆nI(G)}√

n

∥∥∥
∞

+
∥∥∥E{∆nI(Gc)}√

n

∥∥∥
∞

≤ 4000
κ2σ√
Λ0φ0

s0 log p

n
+ E{‖θ̂L − θ0‖1I(Gc)}.

For the second term, we can use Lemma A.6, Cauchy Schwarz and that P{Gc} ≤ 4p−3 to obtain:

E{‖θ̂L − θ0‖1I(Gc)} ≤ E
{‖ε‖2I(Gc)

2nλn
+ 2‖θ0‖1I(Gc)

}
≤ E{‖ε‖4}1/2P(Gc)1/2

2nλn
+ 2‖θ0‖1P{Gc}

≤
√

3σ2

√
np1.5λn

+ 8‖θ0‖1p−3 ≤ 10c
s0 log p

n
,

for n, p large enough . This implies the claim on the bias.

It remains only to prove the intermediate Lemmas A.5 and A.6.

Proof of Lemma A.5. We prove the claim for the second batch, and in the rest of the proof, we
assume that all probabilities and expectations are conditional on the first batch (in particular, the
intermediate estimate θ̂1). The (a, b) entry of Ip − Ω(2)Σ̂(2) reads

(Ip − Ω(2)Σ̂(2))a,b = I(a = b)− 〈Ω(2)ea, Σ̂
(2)eb〉

=
1

n2

∑
i>n1

I(a = b)− 〈ea,Ω(2)xi〉xib.

Now, E{〈ea,Ω(2)xi〉xi,b〉} = I(a = b) and 〈ea,Ω(2)xi〉 is (‖Ω(2)‖2κ)-subgaussian. Since Σ(2) < Λ0Ip,
we have that ‖Ω(2)‖2 ≤ Λ0

−1. This observation, coupled with Lemma D.4, yields 〈ea,Ω(2)xi〉xi,b is
2κ2/Λ0-subexponential. Then we may apply Lemma D.5 for ε ≤ 12κ2/Λ0 as below:

P{(Ip − Ω(2)Σ̂(2))a,b ≥ ε} ≤ exp
(
− n2ε

2

36κ2Λ0
−1

)
.

Keeping ε = ε(p, n2, κ,Λ0) = 15κΛ0
−1/2

√
(log p)/n2 we obtain:

P
{

(Ip − Ω(2)Σ̂(2))a,b ≥ 15κΛ0
−1/2

√
log p

n2

}
≤ p−6.

Union bounding over the pairs (a, b) yields the claim. The requirement n2 ≥ 2(Λ0/κ
2) log p ensures

that the choice ε above satisfies ε ≤ 12κ2/Λ0.
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Proof of Lemma A.6. We first bound the size of θ̂L. By optimality of θ̂L:

λn‖θ̂L‖1 ≤
1

2n
‖ε‖22 + λn‖θ0‖1 −

1

2n
‖y −Xθ̂L‖22

≤ 1

2n
‖ε‖22 + λn‖θ0‖1.

We now use triangle inequality, the bound above and that ‖θ0‖1 ≤ pc as in Assumption 2.6:

‖θ̂L − θ0‖1 ≤ ‖θ̂L‖1 + ‖θ0‖1

≤ 1

2nλn
‖ε‖2 + 2‖θ0‖1 .

as required.

A.3 Central limit asymptotics: proofs of Proposition 2.10 and Theorem 2.11

Our approach is to apply a martingale central limit theorem to show that Wn,a is approximately
normal. An important first step is to show that the conditional covariance Vn,a is stable, or
approximately constant. Recall that Vn,a is defined as

Vn,a = σ2
(n1

n
〈m(1)

a , Σ̂(1)m(1)
a 〉+

n2

n
〈m(2)

a , Σ̂(2)m(2)
a 〉
)
.

We define its deterministic equivalent as follows. Consider the function f : Sn → R by:

f(Σ) = {min〈m,Σm〉 : ‖Σm− ea‖∞ ≤ µ , ‖m‖1 ≤ L}.

We begin with two lemmas about the stability of the optimization program used to obtain the
online debiasing matrices.

Lemma A.7. On its domain (and uniformly in µ, ea), f is L2-Lipschitz with respect to the ‖·‖∞
norm.

Proof. For two matrices Σ,Σ′ in the domain, let m,m′ be the respective optimizers (which exist
by compactness of the set {m : ‖Σm− v‖∞ ≤ µ, ‖m‖1 ≤ L}. We prove that |f(Σ)− f(Σ′)| ≤
L2‖Σ− Σ′‖∞.

f(Σ)− f(Σ′) = 〈Σ,mmT〉 − 〈Σ′,m′(m′)T〉
≤ 〈Σ,m′(m′)T〉 − 〈Σ′,m′(m′)T〉
= 〈(Σ− Σ′)m′,m′〉
≤ ‖(Σ− Σ′)m′‖∞‖m′‖1
≤ ‖Σ− Σ′‖∞‖m′‖21 ≤ L2‖Σ− Σ′‖∞.

Here the first inequality follows from optimality of m and the last two inequalities are Hölder
inequality. The reverse inequality f(Σ)− f(Σ′) ≥ −L2‖Σ− Σ′‖∞ is proved in the same way.

Lemma A.8. We have the following lower bound on the optimization value reached to compute
f(Σ):

(1− µ)2

λmax(Σ)
≤ f(Σ) ≤ 1

λmin(Σ)
.

42



Proof. We first prove the lower bound for f(Σ). Suppose m is is an optimizer for the program.
Then

‖Σm‖2 ≥ ‖Σm‖∞ ≥ ‖ea‖∞ − µ = 1− µ.

On the other hand, the value is given by

〈m,Σm〉 = 〈Σm,Σ−1(Σm)〉 ≥ λmin(Σ−1)‖Σm‖22 = ‖Σm‖22λmax(Σ)−1.

Combining these gives the lower bound.

For the upper bound, it suffices to consider any feasible point; we choose m = Σ−1ea, which
is feasible since ‖Σ−1‖1 ≤ L. The value is then 〈ea,Σ−1ea〉 ≤ λmax(Σ−1) which gives the upper
bound.

Lemma A.9. (Stability of Wn,a) Define Σ(2)(θ) = E{xxT|〈x1, θ〉 ≥ ς}. Then, under Assumptions
2.6 and 2.9

lim
n→∞

∣∣∣Vn,a − σ2
(n1f(Σ)

n
+
n2f(Σ2(θ0))

n

)∣∣∣ = 0, in probability.

Proof. Using Lemma A.7:∣∣∣Vn,a − σ2
(n1

n
f(Σ) +

n2

n
f(Σ(θ0)

)∣∣∣
=
σ2n1

n
(f(Σ̂(1))− f(Σ)) +

σ2n2

n
(f(Σ̂(2) − f(Σ(θ0))))

≤ L2σ
2n1

n
‖Σ− Σ̂(1)‖∞ + L2σ

2n2

n
‖Σ(2)(θ0)− Σ̂(2)‖∞

≤ L2σ
2n1

n
‖Σ− Σ̂(1)‖∞ + L2σ

2n2

n

(
‖Σ(2)(θ0)− Σ(2)(θ̂1)‖∞ + ‖Σ(2)(θ̂1)− Σ̂(2)‖∞

)
≤ σ2L2‖Σ− Σ̂(1)‖∞ + σ2L2

(
K‖θ̂1 − θ0‖1 + ‖Σ(2)(θ̂1)− Σ̂(2)‖∞

)
.

Using Lemma A.2 the first and third term vanish in probability. It is straightforward to apply The-
orem 2.2 to the intermediate estimate θ̂1; indeed Assumption 2.9 guarantees that n1 ≥ cn for a uni-
versal c. Therefore the intermediate estimate has an error ‖θ̂1 − θ0‖1 of order κσφ−1

0

√
(s2

0 log p)/n
with probability converging to one. In particular, the second term is, with probability converging
to one, of order KL2σ3κφ−1

0

√
s2

0(log p)/n = o(1) by Assumption 2.9.

Lemma A.10. Under Assumptions 2.6 and 2.9, with probability at least 1− p−2

max
i
|〈ma, xi〉| ≤ 10Lκ

√
log p,

In particular limn→∞maxi |〈ma, xi〉| = 0 in probability.

Proof. By Hölder inequality, maxi〈|〈ma, xi〉| ≤ maxi ‖ma‖1‖xi‖∞ ≤ Lmaxi ‖xi‖∞. Therefore, it
suffices to prove that, with the required probability maxi,a|xi,a| ≤ 10κ

√
log p. Let u = 10κ

√
log p.

Since xi are uniformly κ-subgaussian, we obtain for q > 0:

P{|xi,a| ≥ u} ≤ u−qE{|xi,a|q} ≤ (
√
qκ/u)q

= exp
(
− q

2
log

u2

κ2q

)
≤ exp

(
− u2

2κ2

)
≤ p−5 ,
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where the last line follows by choosing q = u2/eκ2. By union bound over i ∈ [n], a ∈ [p], we obtain:

P{max
i,a
|xi,a| ≥ u} ≤

∑
i,a

P{|xi,a| ≥ u} ≤ p−3,

which implies the claim (note that p ≥ n as we are focusing on the high-dimensional regime).

With these in hand we can prove Proposition 2.10 and Theorem 2.11.

Proof of Proposition 2.10. Consider the minimal filtration Fi so that

1. For i < n1, y1, . . . , yi, x1, . . . xn1 and ε1, . . . , εi are measurable with respect to Fi.

2. For i ≥ n1 y1, . . . , yi, x1, . . . , xn and ε1, . . . εi are measurable with respect to Fi.

The martingale Wn (and therefore, its ath coordinate Wn,a) is adapted to the filtration Fi. We
can now apply the martingale central limit theorem [HH14, Corollary 3.1] to Wn,a to obtain the
result. From Lemmas A.8 and A.9 we know that Vn,a is bounded away from 0, asymptotically. The
stability and conditional Lindeberg conditions of [HH14, Corollary 3.1] are verified by Lemmas A.9
and A.10.

Proof of Theorem 2.11. This is a straightforward corollary of the bias bound of 2.8 and Proposition
2.10. We will show that:

lim
n→∞

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
≤ Φ(x).

The reverse inequality follows using the same argument.

Fix a δ > 0. We decompose the difference above as:√
n

Vn,a
(θ̂on
a − θ0,a) =

Wn,a√
Vn,a

+
∆n,a√
Vn,a

.

Therefore,

P
{√ n

Vn,a
(θ̂on
a − θ0,a) ≤ x

}
≤ P

{ Wn,a√
Vn,a

≤ x+ δ
}

+ P{|∆n,a| ≥
√
Vn,aδ}.

By Proposition 2.10 the first term converges to Φ(x+ δ). To see that the second term vanishes, ob-
serve first that Lemma A.8 and Lemma A.9, imply that Vn,a is bounded away from 0 in probability.
Using this:

lim
n→∞

P{|∆n,a| ≥
√
Vn,aδ} ≤ lim

n→∞
P{‖∆n‖∞ ≥

√
Vn,aδ}

≤ lim
n→∞

P
{
‖∆n‖∞ ≥ 4000

κ2σ√
Λ0φ0

s0 log p√
n

}
= 0

by applying Theorem 2.8 and that for n large enough,
√
Vn,aδ exceeds the bound on ‖∆n‖∞ used.

Since δ is arbitrary, the claim follows.
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A.4 Proofs for Gaussian designs

In this Section we prove that Gaussian designs of Example 2.5 satisfy the requirements of Theorem
2.2 and Theorem 2.8.

The following distributional identity will be important.

Lemma A.11. Consider the parametrization ς = ς̄〈θ̂,Σθ̂〉
1/2

. Then

x|〈x,θ̂〉≥ς
d
=

Σθ̂

〈θ̂,Σθ̂〉1/2
ξ1 +

(
Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)1/2
ξ2,

where ξ1, ξ2 are independent, ξ2 ∼ N(0, Ip) and ξ1 has the density:

dPξ1
du

(u) =
1√

2πΦ(−ς̄)
exp(−u2/2)I(u ≥ ς̄).

Proof. This follows from the distribution of x|〈x, θ̂〉 being N(µ′,Σ′) with

µ′ =
Σθ̂

〈θ̂,Σθ̂〉
〈x, θ̂〉, Σ′ = Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
.

The following lemma shows that they satisfy compatibility.

Lemma A.12. Let Px = N(0,Σ) for a positive definite covariance Σ. Then, for any vector θ̂ and
subset S ⊆ [p], the second moments E{xxT} and E{xxT|〈x, θ̂〉 ≥ ς} are (φ0, S)-compatible with
φ0 = λmin(Σ)/16.

Proof. Fix an S ⊆ [p]. We prove that Σ = E{x1x
T
1 } is (φ0, S)-compatible with φ0 = λmin(Σ)/16.

Note that, for any v satisfying ‖vSc‖1 ≤ 3‖vS‖, its `1 norm satisfies ‖v‖1 ≤ 4‖vS‖1. Further
Σ < λmin(Σ)Ip implies:

|S|〈v,Σv〉
‖v‖21

≥ λmin(Σ)
|S|‖v‖2

‖v‖21
≥ λmin(Σ)

|S|‖vS‖2

16‖vS‖21
≥ λmin(Σ)

16
.

For E{xxT|〈x, θ̂〉 ≥ ς}, we use Lemma A.11 to obtain

E{xxT|〈x, θ̂〉 ≥ ς} = Σ + (E{ξ2
1} − 1)

Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
,

where ξ1 is as in Lemma A.11. Since E{ξ2
1} = 1 + ς̄ϕ(ς̄)/Φ(−ς̄) ≥ 1 + ς̄2 whenever ς̄ ≥ 0:

E{xxT|〈x, θ̂〉 ≥ ς} ≥ Σ + ς̄2 Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉
< λmin(Σ)Ip .

The rest of the proof is as for Σ.
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Lemma A.13. Let Px = N(0,Σ) for a positive definite covariance Σ. Then, for any vector θ̂ and

subset S ⊆ [p], the random vectors x and x|〈x,θ̂〉≥ς are κ-subgaussian with κ = 2λ
1/2
max(Σ).

Proof. By definition, 〈x, v〉 ∼ N(0, vTΣv) is
√
vTΣv-subGaussian. Optimizing over all unit vectors

v, x is λ
1/2
max(Σ)-subgaussian.

For x|〈x,θ̂〉≥ς , we use the decomposition of Lemma A.11:

x|〈x,θ̂〉≥ς
d
=

Σθ̂

〈θ̂,Σθ̂〉1/2
ξ1 +

(
Σ− Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)1/2
ξ2.

Clearly, ξ2 is 1-subgaussian, which means the second term is λ
1/2
max(Σ)-subgaussian. For the first

term, we claim that ξ1 is 1-subgaussian and therefore the first term is λ
1/2
max(Σ)-subgaussian. To

show this, we start with the moment generating function of ξ1. Recall that ς̄ = ς/〈θ̂,Σθ̂〉1/2:

E{eλξ1} =

∫ ∞
ς̄

eλue−u
2/2 du√

2πΦ(−ς̄)
= eλ

2/2 Φ(λ− ς̄)
Φ(−ς̄)

.

Here ϕ and Φ are the density and c.d.f. of the standard normal distribution. It follows that:

d2

dλ2
logE{eλξ1} =

1

2
+

(λ− ς̄)ϕ(λ− ς̄)
Φ(λ− ς̄)

− ϕ(λ− ς̄)2

Φ(λ− ς̄)2

≤ −1

2
+ sup

λ≥ς̄

(λ− ς̄)ϕ(λ− ς̄)
Φ(λ− ς̄)

≤ 1

2
+ sup

λ≥0

λϕ(λ)

Φ(λ)
< 1 .

Therefore, by integration, ξ1 is 1-subgaussian. The claim then follows.

For Example 2.7, it remains only to show the constraint on the approximate sparsity of the
inverse covariance. We show this in the following

Lemma A.14. Let Px = N(0,Σ) and θ̂ be any vector such that ‖θ̂‖1‖θ̂‖∞ ≤ Lλmin(Σ)‖θ̂‖2/2 and
‖Σ−1‖1 ≤ L/2. Then, with Ω = E{xxT}−1 and Ω(2)(θ̂) = E{xxT|〈x, θ̂〉 ≥ ς}−1:

‖Ω‖1 ∨ ‖Ω(2)‖1 ≤ L.

Proof. By assumption ‖Ω‖1 ≤ L/2, so we only require to prove the claim for Ω(2) = E{xxT|〈x, θ̂〉 ≥
ς}−1. Using Lemma A.11, we can compute the precision matrix:

Ω(2) = E{xxT|〈x, θ̂〉 ≥ ς}−1

=
(

Σ + (E{ξ2
1} − 1)

Σθ̂θ̂TΣ

〈θ̂,Σθ̂〉

)−1

= Ω + (E{ξ2
1}−1 − 1)

θ̂θ̂T

〈θ̂,Σθ̂〉
,

46



where the last step follows by an application of Sherman–Morrison formula. Since E{ξ2
1} = 1 +

ς̄ϕ(ς̄)/Φ(−ς̄), where ς̄ = ς/〈θ̂,Σθ̂〉1/2 this yields:

Ω(2) = Ω− ς̄ϕ(ς̄)

Φ(−ς̄) + ς̄ϕ(ς̄)

θ̂θ̂T

〈θ̂,Σθ̂〉
.

By triangle inequality, for any ς̄ ≥ 0:

‖Ω(2)‖1 ≤ ‖Ω‖1 +
‖θ̂θ̂T‖1
〈θ̂,Σθ̂〉

≤ L

2
+
‖θ̂‖1‖θ̂‖∞
λmin(Σ)‖θ̂‖2

≤ L.

Next we show that the conditional covariance of x is appropriately Lipschitz.

Lemma A.15. Suppose ς = ς̄〈θ,Σθ〉1/2 for a constant ς̄ ≥ 0. Then The conditional covariance
function Σ(2)(θ) = E{xxT|〈x, θ〉 ≥ ς} satisfies:

‖Σ(2)(θ′)− Σ(2)(θ)‖∞ ≤ K‖θ′ − θ‖,

where K =
√

8(1 + ς̄2)λmax(Σ)3/2/λmin(Σ)1/2.

Proof. Using Lemma A.11,

Σ(2)(θ) = Σ + (E{ξ2
1} − 1)

ΣθθTΣ

〈θ,Σθ〉
.

Let v = Σ1/2θ/‖Σ1/2θ‖ and v′ = Σ1/2θ′/‖Σ1/2θ′‖. With this,

‖Σ(2)(θ′)− Σ(2)(θ)‖∞ = (E{ξ2
1} − 1)‖Σ1/2(vvT − v′v′T)Σ1/2‖∞

≤ (E{ξ2
1} − 1)λmax(Σ)‖vvT − v′v′T‖2

≤ (E{ξ2
1} − 1)λmax(Σ)‖vvT − v′v′T‖F

(a)

≤
√

2(E{ξ2
1} − 1)λmax(Σ)‖v − v′‖

(b)

≤
√

8λmax(Σ)3/2

λmin(Σ)1/2
(E{ξ2

1} − 1)‖θ − θ′‖

(c)

≤
√

8λmax(Σ)3/2

λmin(Σ)1/2
(ς̄2 + 1)‖θ − θ′‖ .

Here, (a) follows by noting that for two unit vectors v, v′, we have

‖vvT − v′v′T‖2F = 2− 2(vTv′)2 = 2(1− vTv′)(1 + vTv′) ≤ 2‖v − v′‖2 .
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Also, (b) holds using the following chain of triangle inequalities

‖v − v′‖ =
∥∥∥ Σ1/2θ

‖Σ1/2θ‖
− Σ1/2θ′

‖Σ1/2θ′‖

∥∥∥
≤ ‖Σ

1/2(θ − θ′)‖
‖Σ1/2θ‖

+ ‖Σ1/2θ′‖
∣∣∣ 1

‖Σ1/2θ‖
− 1

‖Σ1/2θ′‖

∣∣∣
≤ 2
‖Σ1/2(θ − θ′)‖
‖Σ1/2θ‖

≤ 2

√
λmax(Σ)

λmin(Σ)
‖θ − θ′‖

Finally (c) holds since
E{ξ1

1} − 1 = ς̄ϕ(ς̄)/Φ(−ς̄) ≤ ς̄2 + 1 ,

using standard tail bound ϕ(ς̄) ς̄
ς̄2+1

≤ Φ(−ς̄).

B Proofs of Section 3

B.1 Remarks on the proof of Proposition 3.3

The p-dimensional VAR(d) model (21) can be represented as a dp-dimensional VAR(1) model. Recall
our notation xt = (zT

t+d−1, . . . , z
T
t )T (rows of X in (23)). Then (21) can be written as

xt = Ãxt−1 + ζ̃t , (69)

with

Ã =

(
A1 A2 . . . Ad−1 Ad

I(d−1)p 0

)
, ζ̃t =

(
ζt+d−1

0

)
. (70)

The reverse characteristic polynomial for the VAR(1) model reads as Ã = I − Ãz.
The proof of RE condition [BM+15, Proposition 4.2] requires upper bounding Λmax(Σ), and

lower bounding Λmin(Σ) which in conjunction with some concentration bounds implies the RE
condition for the sample covariance. Specifically, for bounding Λmax(Σ), by definition Λmax(Σ) ≤
2πM(fx), which along with [BM+15, Equation (4.1)] gives

Λmax(Σ) ≤ 2πM(fx) ≤ Λmax(Σε)

µmin(Ã)
. (71)

The lower bound on Λmin(Σ) is shown to be

Λmin(Σ) ≥ Λmin(Σε)

µmax(A)
. (72)

The analogous claim 3.3 can be proved by following the same lines of the proof of [BM+15,
Proposition 4.2] and we omit the details. However, the bound (71) involves Ã while bound (72)
is in terms of A. Here, we derive an upper bound on Λmax(Σ) that is also in terms of A, which
results in (27).
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We use the notation Γx(`) = E[xtx
T
t+`] to refer the autocovariance of the dp-dimensional process

xt. Therefore Σ = Γx(0). Likewise, the autocovariance Γz(`) is defined for the p-dimensional process
zt. We represent Γx(`) in terms of d2 blocks, each of which is a p× p matrix. The block in position
(r, s) is Γz(`+ r − s). Now, for a vector v ∈ Rdp with unit `2 norm, decompose it as d blocks of p
dimensional vectors v = (vT

1 , v
T
2 , . . . , v

T
d )T, by which we have

vTΓz(`)v =
∑

1≤r,s≤d
vT
r Γx(`+ r − s)vs . (73)

Since the spectral density fz(θ) is the Fourier transform of the autocorrelation function, we have
by Equation (73),

〈v, fz(θ)v〉 =
1

2π

∞∑
`=−∞

〈v,Γz(`)e−j`θv〉

=
1

2π

∞∑
`=−∞

∑
1≤r,s≤d

〈vr,Γz(`+ r − s)e−j`θvs〉

=
∑

1≤r,s≤d
〈vr,

( 1

2π

∞∑
`=−∞

Γx(`+ r − s)e−j(`+r−s)θ
)
vse

j(r−s)θ〉

=
∑

1≤r,s≤d
〈vr, fx(θ)ej(r−s)θvs〉

= V (θ)∗fx(θ)V (θ),

with V (θ) =
d∑
r=1

e−jrθvr. Now, we have:

‖V (θ)‖2 ≤
d∑
r=1

‖vr‖2 ≤
(
d

d∑
r=1

‖vr‖22
)1/2

≤
√
d.

Combining this with the Rayleigh quotient calculation above, yields M(fx) ≤ dM(fz). Now, by
using [BM+15, Equation (4.1)] for the process zt, with reverse characteristic polynomial A, we
obtain

Λmax(Σ) ≤ 2πM(fx) ≤ 2πdM(fz) ≤
dΛmax(Σε)

µmin(A)
. (74)

B.2 Proof of Lemma 3.6

Define

G̃n(τ) ≡
{

Σ̂(`) ∈ Rdp×dp : |ΩΣ̂(`) − I|∞ < τ

√
log(dp)

n`

}
.

By definition, we have

µmin
` (Σ̂(`)) = min

M∈Rdp×dp
|M Σ̂(`) − I|∞ ≤ |ΩΣ̂(`) − I|∞ , (75)
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and therefore G̃n(τ) ⊆ Gn. So it suffices to lower bound the probability of event G̃n(τ).

By deploying [BM+15, Proposition 2.4] and the bound (74), we have the following in place.
There exists a constant c > 0, such that for any vectors u, v ∈ Rdp with ‖u‖ ≤ 1, ‖v‖ ≤ 1, and any
η ≥ 0,

P
(
|uT(Σ̂(`) − Σ)v| > 3dΛmax(Σε)

µmin(A)
η

)
≤ 6 exp

(
−cn` min{η2, η}

)
. (76)

Now fix i, j ∈ [dp] and let u = Ωei
‖Ωei‖ and v = ej to get

P
(
|(ΩΣ̂(`) − I)ij | ≥ τ

√
log(dp)

n`

)
= P

(
|uT(Σ̂(`) − Σ)v| ≥ τ

‖Σ−1ei‖

√
log(dp)

n`

)
≤ P

(
|uT(Σ̂(`) − Σ)v| ≥ τΛmin(Σε)

µmax(A)

√
log(dp)

n`

)
≤ 6p−c

′
0 , with c′0 ≡ c

( τ
3d

)2( µmin(A)

µmax(A)

)2(Λmin(Σε)

Λmax(Σε)

)2
,

where in the first inequality we used that ‖Ωei‖ ≤ Λmin(Σ)−1 ≤ µmax(A)/Λmin(Σε). In the second

inequality, we used that η = ( τ3d)( Λmin(Σε)
Λmax(Σε)

)( µmin(A)
µmax(A))

√
log(dp)
n`

< 1 and hence min(η, η2) = η2. Then,

by union bounding over i, j ∈ [dp], we get

P(Σ̂(`) ∈ G̃n(τ)) ≥ 1− 6(dp)−c
′
0+2 ,

which completes the proof.

B.3 Proof of Theorem 3.7

Starting from the decomposition (37), we have

√
n(θ̂on − θ0) = ∆n +Wn ,

with ∆n = Bn(θ̂L − θ0). As explained below (37), Wn is a martingale with respect to filtration
Fj = {ε1, . . . , εj}, j ∈ N and hence E(Wn) = 0.

We also note that ‖∆n‖∞ ≤ ‖Bn‖∞‖θ̂L − θ0‖1. Our next lemma bounds ‖Bn‖∞.

Lemma B.1. Suppose that the Optimization problem (29) is feasible for all i ∈ [dp]. Then, there
exists a constant c1 > 0, such that

‖Bn‖∞ ≤ (τ + Lc1)

√
log(dp)

n

(
r0 +

K−1∑
`=1

r`√
n`−1

+
K−1∑
`=1

√
r`

)
, (77)

with probability at least 1− 12(dp)−c2, where c2 = c(c1µmin(A))2/(3dΛmax(Σε))
2 − 2.
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The bound provided in Lemma B.1 holds for general batch sizes {r0, . . . , rK−1}. We choose the
batch lengths as r` = β` for some β > 1 and ` = 1, . . . ,K − 2. We also let r0 =

√
n and choose

rK−1 so that the total lengths of batches add up to n (that is r0 + r1 + . . .+ rK−1 = n). Therefore,
K = O(logβ(n)). Following this choice, bound (77) simplifies to the following bound:

‖Bn‖∞ ≤ (τ + Lc1)Cβ
√

log p , (78)

for some constant Cβ > 0 that depends on the constant β.

Next by combining Proposition 3.4 and Lemma B.1 we obtain

‖∆n‖∞ ≤ (τ + Lc1)Cβ
√

log pCσ
s0λn
α

≤ λ0(τ + Lc1)Cβ
Cσ

α
s0

√
log p

√
log(dp)

n
≤ C0σs0

log(dp)√
n

, (79)

with probability at least 1− 12p−c2 − exp(−c log(dp2))− exp(−cn/(1 ∨ ω2)), where

c2 = c
( c1µmin(A)

3dΛmax(Σε)

)2
, ω =

dΛmax(Σε)µmax(A)

(Λmin(Σε)µmin(A))
,

and constant C is given in the statement of Proposition 3.4. In the last step we absorbed all the
constants in C0 = C0(α, λ0, a, L).

Next note that

‖E{θ̂on − θ0}‖∞ =
1√
n
‖E{∆n}‖∞

≤ 1√
n
E{‖∆n‖∞}

=
1√
n

∫ ∞
0

P{‖∆n‖∞ ≥ u}du ≤ 10Cσs0
log(dp)

n
, (80)

by using the tail bound (79).

B.3.1 Proof of Lemma B.1

Fix a ∈ [dp] and define Bn,a ≡
√
nea − 1√

n

∑K−2
`=0 r`+1R

(`+1)m`
a. We then have

Bn,a =
√
nea −

1√
n

K−2∑
`=0

r`+1R
(`+1)m`

a =
r0√
n
ea +

K−2∑
`=0

r`+1√
n

(
ea −R(`+1)m`

a

)
, (81)

where we used that
∑K−1

`=0 r` = n. To bound |Bn,a|, we go through the following steps:

1. By the construction of decorrelating vectors m`
a as in optimization (29), we have

‖Σ̂(`)m`
a − ea‖∞ ≤ µ` , ` = 0, . . . ,K − 1 . (82)
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2. We write

‖Σm`
a − ea‖∞ ≤ ‖Σ̂(`)m`

a − ea‖∞ + ‖(Σ̂(`) − Σ)m`
a‖∞

≤ µ` +
∣∣∣Σ̂(`) − Σ

∣∣∣
∞
× ‖m`

a‖1

≤ µ` + Lc1

√
log(dp)

n`
, (83)

where the first step follows from triangle inequality; the second one holds by (82); the third in-
equality follows from the constraint ‖m`

a‖1 ≤ L in optimization (29) along with Equation (76).
Specifically, we apply Equation (76) with v = ei, u = ej and union bound over i, j ∈ [dp],
from which we obtain that the last step above holds with probability at least 1 − 6(dp)−c2 ,
with c2 = c(c1µmin(A))2/(3dΛmax(Σε))

2 − 2.

3. By a similar argument as in (83), we have |R(`+1)−Σ|∞ ≤ c1

√
(log p)/r`+1, with probability

at least 1− 12(dp)−c2 . Therefore,

‖ea −R(`+1)m`
a‖∞ ≤ ‖ea − Σm`

a‖∞ + ‖(Σ−R(`+1))m`
a‖∞

≤ µ` + Lc1

√
log(dp)

n`
+
∣∣∣Σ−R(`+1)

∣∣∣
∞
× ‖m`

a‖1

≤ µ` + Lc1

√
log(dp)

n`
+ Lc1

√
log(dp)

r`+1
. (84)

Using (84) in (81), we obtain

‖Bn,a‖∞ ≤
r0√
n

+
1√
n

K−2∑
`=0

r`+1‖ea −R(`+1)m`
a‖∞

≤ r0√
n

+
1√
n

K−2∑
`=0

r`+1

(
µ` + Lc1

√
log p

n`
+ Lc1

√
log p

r`+1

)

≤ r0√
n

+

√
log p√
n

K−2∑
`=0

r`+1

(
τ + Lc1√

n`
+

Lc1√
r`+1

)
. (85)

Simplifying the above bound and since it holds for all i ∈ [dp], we obtain that with probability at
least 1− 12(dp)−c2 ,

‖Bn‖∞ ≤ (τ + Lc1)

√
log p

n

(
r0 +

K−1∑
`=1

r`√
n`−1

+
K−1∑
`=1

√
r`

)
, (86)

which concludes the proof.

B.4 Proof of Lemma 3.8

We start by proving Claim (43). Let ma = Ωea be the first column of the inverse (stationary)
covariance. Using the fact that E{xtxT

t } = Σ we have 〈ma,E{xtxT
t }ma〉 = Ωa,a, which is claimed

52



to be the dominant term in the conditional variance Vn,a. Therefore, we decompose the difference
as follows:

Vn,a − Ωa,a =
σ2

n

K−2∑
`=0

∑
t∈E`+1

[
〈m`

a, xt〉2 − Ωa,a

]
− r0σ

2

n
Ωa,a

=
σ2

n

K−2∑
`=0

∑
t∈E`+1

[
〈m`

a, xt〉2 − 〈ma,E{xtxT
t }ma〉

]
− r0σ

2

n
Ωa,a

=
σ2

n

K−2∑
`=0

∑
t∈E`+1

[〈m`
a, xt〉2 − 〈ma, xt〉2]

+
1

n

n−1∑
t=0

〈ma, (xtx
T
t − E{xtxT

t })ma〉 −
r0σ

2

n
Ωa,a . (87)

We teat each of these three terms separately. Write∣∣∣∣ 1n
K−2∑
`=0

∑
t∈E`+1

[〈m`
a, xt〉2 − 〈ma, xt〉2]

∣∣∣∣ =
1

n

∣∣∣∣K−2∑
`=0

∑
t∈E`+1

[〈m`
a −ma, xt〉〈m`

a +ma, xt〉]
∣∣∣∣

≤ 1

n

∥∥∥∥K−2∑
`=0

∑
t∈E`+1

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
‖m`

a +ma‖1

≤ 2L

n

∥∥∥∥K−2∑
`=0

∑
t∈E`+1

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
. (88)

To bound the last quantity, note that

1

n

∥∥∥∥K−2∑
`=0

∑
t∈E`+1

〈m`
a −ma, xt〉xt

∥∥∥∥
∞
≤
∥∥∥∥ea − 1

n

K−2∑
`=0

∑
t∈E`+1

〈m`
a, xt〉xt

∥∥∥∥
∞

+

∥∥∥∥ea − 1

n

K−2∑
`=0

∑
t∈E`+1

〈ma, xt〉xt
∥∥∥∥
∞

=

∥∥∥∥eT
a −

1

n

K−2∑
`=0

r`+1(m`
a)

TR(`+1)

∥∥∥∥
∞

+

∥∥∥∥eT
a −mT

a Σ̂(K−1)

∥∥∥∥
∞

≤ C1

√
log p

n
+ a

√
log p

n
= C2

√
log p

n
, (89)

for some constant C1 > 0 and C2 = C1 + a. The last inequality follows from the positive events of
Lemma B.1 and Lemma 3.6. Combining Equations (88) and (89), we obtain∣∣∣∣ 1n

K−2∑
`=0

∑
t∈E`+1

[〈m`
a, xt〉2 − 〈ma, xt〉2]

∣∣∣∣ = OP

(
LΣ

√
log p

n

)
. (90)
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For the second term in (87), we can use Equation 76 with v = u = ma/‖ma‖, η = (log p)/n to
obtain ∣∣∣ 1

n

n−1∑
t=0

〈ma, (xtx
T
t − E{xtxT

t })ma〉
∣∣∣ =

∣∣〈ma, (Σ̂
(K−1) − Σ)ma〉

∣∣
≤ 3dΛmax(Σε)

µmin(A)
‖ma‖2

√
log p

n

≤ 3dΛmax(Σε)

µmin(A)Λmin(Σ)2

√
log p

n
= OP

(√ log p

n

)
, (91)

where we used that ‖ma‖ = ‖Ωea‖ ≤ Λmax(Ω) = Λmin(Σ)−1. For the third term, we have r0 =
√
n.

Also, Ωa,a ≤ ‖Ωea‖1 ≤ LΣ. Therefore, this term is O(LΣ/
√
n). Combining this bound with (90)

and (91) in Equation (87) we get the Claim (43).

We next prove Claim (44). Note that |εt| = |ζt+d| is bounded with σ
√

2 log(n), with high proba-
bility for t ∈ [n], by tail bound for Gaussian variables. In addition, max`|〈m`

a, xt〉| ≤ ‖m`
a‖1‖xt‖∞ ≤

L‖xt‖∞ ≤ LΣ|X|∞. Note that variance of each entry xt,i is bounded by DΣ. Hence, by tail bound
for Gaussian variables and union bounding we have

P
(
|X|∞ <

√
2DΣ log(dpn)

)
≥ 1− (pdn)−2 , (92)

Putting these bounds together we get

max
{ 1√

n
|〈m`

a, xt〉εt| : ` ∈ [K − 2], t ∈ [n− 1]
}

≤ 1√
n
LΣ

√
2DΣ log(dpn)

√
2 log(n)σ

√
2 log(n)

≤ σLΣ

√
DΣ

(
8

log3(dpn)

n

)1/2

= o(1) ,

using Assumption 3.5 (2).

B.5 Proof of Proposition 3.10

We prove that for all x ∈ R,

lim
n→∞

sup
‖θ0‖0≤s0

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}
≤ Φ(x) . (93)

We can obtain a matching lower bound by a similar argument which implies the result.

Invoking the decomposition (41) we have

√
n(θ̂on

a − θ0,a)√
Vn,a

=
Wn√
Vn,a

+
∆n√
Vn,a

.
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By Corollary 3.9, we have that W̃n ≡Wn/
√
Vn,a → N(0, 1) in distribution. Fix an arbitrary ε > 0

and write

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}

= P
{
W̃n +

∆n√
Vn,a

≤ x
}

≤ P{W̃n ≤ x+ ε}+ P
{ |∆a|√

Vn,a
≥ ε
}

By taking the limit and deploying Equation (41), we get

lim
n→∞

sup
‖θ0‖0≤s0

P
{√n(θ̂on

a − θ0,a)√
Vn,a

≤ x
}
≤ Φ(x+ ε) + lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|√

Vn,a
≥ ε
}

(94)

We show that the limit on the right hand side vanishes for any ε > 0. By virtue of Lemma 3.8
(Equation (43)), we have

lim
n→∞

sup
‖θ0‖0≤s0

P
{ |∆a|√

Vn,a
≥ ε
}
≤ lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|
σ
√

Ωa,a

≥ ε
}

≤ lim
n→∞

sup
‖θ0‖0≤s0

P
{
|∆a| ≥ εσ

√
Ωa,a

}
≤ lim

n→∞

{
12p−c2 + d−cp−2c + exp(−cn(1 ∧ ω−2))

}
= 0 . (95)

Here, in the last inequality we used that s0 = o(
√
n/ log(dp)) and therefore, for large enough n, we

have C0s0 log(dp)/
√
n < εσ

√
Ωa,a and hence we can apply bound (42).

Using (95) in bound (94) and since ε was arbitrary, we obtain (93).

C Proofs of Section 6

C.1 Proof of Lemma 6.1

Rewrite the optimization problem (29) as follows:

minimize mTΣ̂(`)m

subject to 〈z, Σ̂(`)m− ea〉 ≤ µ`, ‖m‖1 ≤ L, ‖z‖1 = 1 ,
(96)

The Lagrangian is given by

L(m, z, λ) = mTΣ̂(`)m+ λ(〈z, Σ̂(`)m− ea〉 − µ`), ‖z‖1 = 1, ‖m‖1 ≤ L , (97)

If λ ≤ 2L, minimizing Lagrangian over m is equivalent to ∂L
∂m = 0 and we get m∗ = −λz∗/2. The

dual problem is then given by

maximize − λ2

4
zTΣ̂(`)z − λ〈z, ea〉 − λµ`

subject to
λ

2
≤ L, ‖z‖1 = 1 ,

(98)
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As ‖z‖1 = 1, by introducing β = −λ
2 z, we get ‖β‖1 = λ

2 . Rewrite the dual optimization problem
in terms of β to get

minimize
1

2
βTΣ̂(`)β − 〈β, ea〉+ µ`‖β‖1

subject to ‖β‖1 ≤ L ,
(99)

Given β∗ as the minimizer of the above optimization problem, from the relation of β and z we
realize that m∗ = β∗.

Also note that since optimization (99) is the dual to problem (96), we have that if (96) is feasible
then the problem (99) is bounded.

C.2 Proof of Lemma 6.2

By virtue of Proposition 3.3, the sample covariance Σ̂(K−1) satisfies RE condition, Σ̂(K−1) ∼
RE(α, τ), where

α =
Λmin(Σε)

2µmax(A)
, τ = α(ω2 ∨ 1)

log(dp)

n
, (100)

and by the sample size condition we have τ < 1/(32sΩ).

Hereafter, we use the shorthand m∗a = Ωea and let L(m) be the objective function in the
optimization (65). By optimality of ma, we have L(m∗a) ≤ L(ma). Defining the error vector
ν ≡ ma −m∗a and after some simple algebraic calculation we obtain the equivalent inequality

1

2
νTΣ̂(K−1)ν ≤ 〈ν, ea − Σ̂(K−1)m∗a〉+ µn(‖m∗a‖1 − ‖m∗a + ν‖1) . (101)

In the following we first upper bound the right hand side. By employing Lemma 3.6 (for ` = K− 1
and nK−1 = n), we have that with high probability

〈ν, ea − Σ̂(K−1)m∗a〉 ≤ ‖ν‖1a
√

log(dp)

n
= (‖νS‖1 + ‖νSc‖1)

µn
2
,

where S = supp(Ωea) and hence |S| ≤ sΩ. On the other hand,

‖ma + ν‖1 − ‖m∗a‖1 ≥ (‖m∗a,S‖1 − ‖νS‖1) + ‖νSc‖1 − ‖m∗a‖1 = ‖νSc‖1 − ‖νS‖1 .

Combining these pieces we get that the right-hand side of (101) is upper bounded by

(‖νS‖1 + ‖νSc‖1)
µn
2

+ µn (‖νS‖1 − ‖νSc‖1) =
3

2
µn‖νS‖1 −

1

2
µn‖νSc‖1 , (102)

Given that Σ̂(K−1) � 0, the left hand side of (101) is non-negative, which implies that ‖νSc‖1 ≤
3‖νS‖1 and hence

‖ν‖1 ≤ 4‖νS‖1 ≤ 4
√
sΩ‖νS‖2 ≤ 4

√
sΩ‖ν‖2 . (103)

Next by using the RE condition for Σ̂(K−1) we write

νTΣ̂(K−1)ν ≥ α‖ν‖22 − ατ‖ν‖21 ≥ α(1− 16sΩτ)‖ν‖22 ≥
α

2
‖ν‖22 , (104)
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where we used τ ≤ 1/(32sΩ) in the final step.

Putting (101), (102) and (104) together, we obtain

α

4
‖ν‖22 ≤

3

2
µn‖νS‖1 ≤ 6

√
sΩµn‖ν‖2 .

Simplifying the bound and using equation 103, we get

‖ν‖2 ≤
24

α

√
sΩµn ,

‖ν‖1 ≤
96

α
sΩµn ,

which completes the proof.

C.3 Proof of Theorem 6.3

Continuing from the decomposition (63) we have

√
n(θ̂off − θ0) = ∆1 + ∆2 + Z , (105)

with Z = ΩXTε/
√
n. By using Lemma 3.6 (for ` = n) and recalling the choice of µn = τ

√
(log p)/n

we have that the following optimization is feasible, with high probability:

minimize mTΣ̂(n)m

subject to ‖Σ̂(n)m− ea‖∞ ≤ µn .

Therefore, optimization (65) (which is shown to be its dual in Lemma (6.1)) has bounded solution.
Hence, its solution should satisfy the KKT condition which reads as

Σ̂(n)ma − ea + µnsign(ma) = 0 , (106)

which implies ‖Σ̂(n)ma − ea‖∞ ≤ µn. Invoking the estimation error bound of Lasso for time series
(Proposition 3.4), we bound ∆1 as

‖∆1‖∞ ≤ C
√
nµns0

√
log p

n
= OP

(
s0

log(dp)√
n

)
. (107)

We next bound the bias term ∆2. By virtue of [BM+15, Proposition 3.2] we have the deviation
bound ‖XTε‖∞/

√
n = OP (

√
log(dp)), which in combination with Lemma 6.2 gives us the following

bound

‖∆2‖∞ ≤
(

max
i∈[dp]

‖(M − Ω)ei)‖
)(

1√
n
‖XTε‖∞

)
= OP

(
sΩ

log(dp)√
n

)
. (108)

Therefore, letting ∆ = ∆1 + ∆2, we have ‖∆‖∞ = oP (1), by recalling our assumption s0 =
o(
√
n/ log(dp)) and sΩ = o(

√
n/ log(dp)).

Our next lemma is analogous to Lemma 3.8 for the covariance of the noise component in the
offline debiased estimator, and its proof is deferred to Section C.1.
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Lemma C.1. Assume that sΩ = o(
√
n/ log(dp)) and Λmin(Σε)/µmax(A) > cmin > 0 for some

constant cmin > 0. For µn = τ
√

(log p)/n and the decorrelating vectors mi constructed by (65), the
following holds. For any fixed sequence of integers a(n) ∈ [dp], we have

mT
a Σ̂(n)ma = Ωa,a + oP (1/

√
log(dp)) . (109)

We are now ready to prove the theorem statement. We show that

lim
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
≤ Φ(u) . (110)

A similar lower bound can be proved analogously. By the decomposition (105) we have

√
n(θ̂off

a − θ0,a)√
Vn,a

=
∆a√
Vn,a

+
Za√
Vn,a

.

Define

Z̃a ≡
Za

σ
√

Ωa,a

=
1

σ
√
nΩa,a

(ΩXTε)a =
1

σ
√
nΩa,a

n∑
i=1

eT
aΩxiεi .

Since εi is independent of xi, the summand
∑n

i=1 e
T
aΩxiεi is a martingale. Furthermore, E[(eT

aΩxiεi)
2] =

σ2Ωa,a. Hence, by a martingale central limit theorem [HH14, Corollary 3.2], we have that Z̃a →
N(0, 1) in distribution. In other words,

lim
n→∞

P{Z̃au} = Φ(u) . (111)

Next, fix δ ∈ (0, 1) and write

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
= P

{√
Ωa,a√
Vn,a

Z̃a +
∆a√
Vn,a

≤ u

}

≤ P

{√
Ωa,a√
Vn,a

Z̃a ≤ u+ δ

}
+ P

{
∆a√
Vn,a

≥ δ

}

≤ P
{
Z̃a ≤ u+ 2δ + δ|u|

}
+ P

{∣∣∣√Ωa,a√
Vn,a

− 1
∣∣∣ ≥ δ}

+ P

{
∆a√
Vn,a

≥ δ

}
.

Now by taking the limit of both sides and using (111) and Lemma C.1, we obtain

lim sup
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂off

a − θ0,a)√
Vn,a

≤ u

}
≤

Φ(u+ 2δ + δ|u|) + lim sup
n→∞

sup
‖θ0‖0≤s0

P

{
∆a√
Vn,a

≥ δ

}
. (112)
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Since δ ∈ (0, 1) was chosen arbitrarily, it suffices to show that the limit on the right hand side
vanishes. To do that, we use Lemma C.1 again to write

lim
n→∞

sup
‖θ0‖0≤s0

P
{ |∆a|√

Vn,a
≥ δ
}
≤ lim

n→∞
sup

‖θ0‖0≤s0
P
{ |∆a|
σ
√

(Ωa,a

≥ δ
}

≤ lim
n→∞

sup
‖θ0‖0≤s0

P
{
|∆a| ≥ δσ

√
Ωa,a

}
= 0 ,

where the last step follows since we showed ‖∆‖∞ = oP (1). The proof is complete.

C.3.1 Proof of Lemma C.1

By invoking bound (72) on minimum eigenvalue of the population covariance, we have

Λmin(Σ) ≥ Λmin(Σε)

µmax(A)
> cmin . (113)

by our assumption. Therefore, Λmax(Ω) = (Λmin(Σ))−1 < 1/cmin. Since Ω � 0, we have |Ωa,b| ≤√
Ωa,aΩb,b for any two indices a, b ∈ [dp]. Hence, |Ω|∞ ≤ 1/cmin. This implies that ‖Ωea‖1 ≤

sΩ/cmin. Using this observation along with the bound established in Lemma 6.2, we obtain

‖ma‖1 ≤ ‖Ωea‖+ ‖ma − Ωea‖1 ≤
sΩ

cmin
+

192τ

α
sΩ

√
log(dp)

n
= O(sΩ) . (114)

We also have

‖ma − Ωea‖∞ ≤ ‖ma − Ωea‖1 = O
(
sΩ

√
log(dp)

n

)
. (115)

In addition, by the KKT condition (106) we have

‖Σ̂(n)ma − ea‖∞ ≤ µn . (116)

Combining bounds (114), (115) and (116), we have

|mT
a Σ̂(n)ma − Ωa,a| ≤ |(mT

a Σ̂(n) − eT
a )ma|+ |eT

ama − Ωa,a|

≤ ‖mT
a Σ̂(n) − eT

a ‖∞‖ma‖1 + ‖ma − Ωea‖∞

= O
(
sΩ

√
log(dp)

n

)
= o(1/

√
log(dp)) ,

which completes the proof.

D Technical preliminaries

Definition D.1. (Subgaussian norm) The subgaussian norm of a random variable X, denoted by
‖X‖ψ2, is defined as

‖X‖ψ2 ≡ sup
q≥1

q−1/2E{|X|q}1/q.

For a random vector X the subgaussian norm is defined as

‖X‖ψ2 ≡ sup
‖v‖=1

‖〈X, v〉‖ψ2 .
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Definition D.2. (Subexponential norm) The subexponential norm of a random variable X is de-
fined as

‖X‖ψ1 ≡ sup
q≥1

q−1E{|X|q}1/q.

For a random vector X the subexponential norm is defined by

‖X‖ψ1 ≡ sup
‖v‖=1

‖〈X, v〉‖ψ1 .

Definition D.3. (Uniformly subgaussian/subexponential sequences) We say a sequence of random
variables {Xi}i≥1 adapted to a filtration {Fi}i≥0 is uniformly K-subgaussian if, almost surely:

sup
i≥1

sup
q≥1

q−1/2E{|Xi|q|Fi−1}1/q ≤ K.

A sequence of random vectors {Xi}i≥1 is uniformly K-subgaussian if, almost surely,

sup
i≥1

sup
‖v‖=1

sup
q≥1

E{|〈Xi, v〉|q|Fi−1}1/q ≤ K.

Subexponential sequences are defined analogously, replacing the factor q−1/2 with q−1 above.

Lemma D.4. For a pair of random variables X,Y , ‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2.

Proof. By Cauchy Schwarz:

‖XY ‖ψ1 = sup
q≥1

q−1E{|XY |q}1/q

≤ sup
q≥1

q−1E{|X|2q}1/2qE{|Y |2q}1/2q

≤ 2
(

sup
q≥2

(2q)−1/2E{|X|2q}1/2q
)
·
(

sup
q≥2

(2q)−1/2E{|Y |2q}1/2q
)

≤ 2‖X‖ψ2‖Y ‖ψ2 .

The following lemma from [Ver12] is a Bernstein-type tail inequality for sub-exponential random
variables.

Lemma D.5 ([Ver12, Proposition 5.16]). Let X1, X2, . . . , Xn be a sequence of independent random
variables with maxi‖Xi‖ψ1 ≤ K. Then for any ε ≥ 0:

P
{∣∣∣ 1
n

n∑
i=1

Xi − E{Xi}
∣∣∣ ≥ ε} ≤ 2 exp

{
− nε

6eK
min

( ε

eK
, 1
)}

(117)

We also use a martingale generalization of [Ver12, Proposition 5.16], whose proof is we omit.

Lemma D.6. Suppose (Fi)i≥0 is a filtration, X1, X2, . . . , Xn is a uniformly K-subexponential se-
quence of random variables adapted to (Fi)i≥0 such that almost surely E{Xi|Fi−1} = 0. Then for
any ε ≥ 0:

P
{∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣ ≥ ε} ≤ 2 exp
{
− nε

6eK
min

( ε

eK
, 1
)}

(118)
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E Simulation results for the Dominick’s data set

In this section we report the p-values obtained by the online debiasing for the cross-category effects.
Figures 6, 7, 8 provide the p-values corresponding to the effect of price, sale, and promotions of
different categories on the other categories, after one week (d = 1) and two weeks (d = 2). The
darker cells indicate smaller p-values and hence more significant associations.
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(b) 1-Week effect of prices of x−axis categories on sales of y−axis categories

Figure 6: Figures 6a, and 6b respectively show p-values for cross-category effects of sales, prices of x-axis
categories on sales of y−axis categories after one week.
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(a) 1-Week effect of promotions of x−axis categories on sales of y−axis categories
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(b) 2-Week effect of promotions of x−axis categories on sales of y−axis categories

Figure 7: Figures 7a, and 7b show p−values for cross-category effects of promotions of x−axis categories on
sales of y−axis categories after one week and two weeks.
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(b) 2-Week effect of prices of x−axis categories on sales of y−axis categories

Figure 8: Figures 8a, and 8b respectively show p-values for cross-category effects of sales, and prices of x-axis
categories on sales of y−axis categories after two weeks.
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