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Abstract

Unlike its cousin 3SAT, the NAE-3SAT (not-all-equal-3SAT) problem has the property that
spectral/SDP algorithms can efficiently refute random instances when the constraint density
is a large constant (with high probability). But do these methods work immediately above
the “satisfiability threshold”, or is there still a range of constraint densities for which random
NAE-3SAT instances are unsatisfiable but hard to refute?

We show that the latter situation prevails, at least in the context of random regular instances
and SDP-based refutation. More precisely, whereas a random d-regular instance of NAE-3SAT
is easily shown to be unsatisfiable (whp) once d ≥ 8, we establish the following sharp threshold
result regarding efficient refutation: If d < 13.5 then the basic SDP, even augmented with
triangle inequalities, fails to refute satisfiability (whp); if d > 13.5 then even the most basic
spectral algorithm refutes satisfiability (whp).
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1 Introduction

A randomly chosen n-variable constraint satisfaction problem (CSP) will typically be unsatisfiable
once the constraint density α (ratio of constraints to variables) is a sufficiently large constant.
Taking 3SAT as an example, the conjectural satisfiability threshold [MPZ02, MMZ06] is αc ≈
4.2667, and the trivial first moment method already establishes unsatisfiability (whp) once α >
log7/8(1/2) ≈ 5.19. Despite this, there is no known efficient algorithm that can refute random 3SAT
instances (whp) for any large constant α. The best known algorithms [FGK05, GL03, CGL07, FO07,
FKO06], all of which use spectral or semidefinite-programming (SDP) techniques, work only once
α '

√
n. Indeed, there are lower bounds [Sch10, Tul09, KMOW17] showing that any polynomial-

time algorithm based on such techniques — more generally, based on the constant-degree “Sum of
Squares” method — will fail to refute unless α '

√
n. The most general of these results [KMOW17]

applies to any CSP for which the constraint predicate supports a pairwise-uniform probability
distribution.

On the other hand, for any CSP whose predicate does not support a pairwise-uniform probability
distribution, it has been shown [AOW15] that there is an efficient SDP-based algorithm for refuting
random instances once the constraint density α is a sufficiently large constant.1 For such CSPs,
where “all of the action” is in the sparse regime of O(n) constraints, it is more plausible to hope
for an efficient refutation algorithm that works just above the satisfiability threshold — or at least
to identify sharp thresholds for when efficient refutation algorithms succeed.

Perhaps the simplest and most natural NP-complete CSP of this type is NAE-3SAT. This is the
variant of 3SAT in which a clause is considered “satisfied” if and only if it has at least one true literal
and one false literal; i.e., the literals’ truth values are Not All Equal. (The further variant wherein
all literals appear positively is equivalent to the problem of 2-coloring a 3-uniform hypergraph.)
Being a more symmetric — and in some sense, simpler — variant of 3SAT, the NAE-3SAT problem
has received a great deal of attention in the study of random CSPs; see, e.g., [AS93, ACIM01, AM02,
GJ03, CNRZ03, DRZ08, DKR15, DSS16]. In particular, by 2003 Goerdt and Jurdziński [GJ03]
had already proven that SDP methods could refute random NAE-3SAT instances at sufficiently
high constant constraint density. NAE-3SAT is also closely related to the Max-Cut and 2XOR-SAT
CSPs and has a natural basic SDP relaxation; for this reason, the problem has also been well-studied
from the point of view of worst-case approximation algorithms [KLP96, AE98, Zwi98, Zwi99].

This paper is motivated by the question of whether efficient algorithms might be able to refute
unsatisfiability of random NAE-3SAT instances at densities all the way down to the satisfiability
threshold — or whether there is still a range of constant densities where random instances are
unsatisfiable, but this is hard for efficient algorithms to certify. The latter case seems to prevail
for 3SAT, and one would likely pessimistically guess the same is true for NAE-3SAT. However one
may need a finer analysis for NAE-3SAT; the range of presumably-hard densities for refuting 3SAT
is between a constant and

√
n, whereas for NAE-3SAT it is between two universal constants.

One way to give evidence for the existence of hard densities for NAE-3SAT refutation would
be to study the SDP-satisfiability threshold for random instances; i.e., the largest density for which
the basic SDP algorithm fails to refute satisfiability. The goal would be to give a lower-bound for
the SDP-satisfiability threshold that exceeds the actual NAE-3SAT satisfiability threshold. In fact,
the main result of this paper is a determination of the exact SDP-satisfiability threshold of random
NAE-3SAT instances, in the setting of random regular instances. This threshold provably exceeds
the actual satisfiability threshold, thus establishing a range of degrees for which random regular

1In [AOW15], it is stated that α = nk/2−1polylogn suffices when no k-wise uniform distribution is supported;
however, in the particular case of k = 2 one can show that the polylogn is unnecessary, using the (worst-case) strong
refutation algorithm for 2XOR-SAT [CW04].
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NAE-3SAT refutation is hard for SDP algorithms.

1.1 Our results

For technical simplicity, we work in the setting of random regular instances of NAE-3SAT, where
every variable participates in the same number, d, of 3NAE-constraints. (This is in contrast to the
“Erdős–Rényi” setting with clause density α, in which the degree of each variable is like a Poisson
random variable with mean 3α.) We also use the “random lift” model for d-regular instances,
rather than, say, the “configuration” model. For precise details see Section 3.1, but in brief, our
random d-regular instances are chosen as follows:

i Start with the bipartite graph Kd,3.

ii Choose a uniformly random n-lift H, a bipartite graph with dn vertices of degree 3 in one
part and 3n vertices of degree d in the other part.

iii Treat the degree-d vertices as CSP variables and the degree-3 vertices as 3NAE constraints
on the adjacent variables

iv In each constraint, randomly replace each variable-appearance with its negation, uniformly
and independently.

Notice that for any (3, d)-biregular graph H and any truth assignment to the variables, the ran-
domness from the negations alone gives us that each constraint is independently satisfied with
probability 3/4. Thus the first moment method implies the following:

Fact 1.1. For d > log 4
3

8 ≈ 7.228 (i.e., for d ≥ 8) a random d-regular NAE-3SAT instance will be

unsatisfiable with high probability (indeed, in any model with random negations).2

Our main theorem is the following sharp threshold for SDP-satisfiability:

Theorem 1.2. Let I be a random d-regular instance of NAE-3SAT. Then with high probability
(meaning probability 1− on→∞(1)):

• For d < 13.5, the natural SDP relaxation will not refute satisfiability of I.

• For d > 13.5, the natural SDP relaxation will refute satisfiability of I.

Of course, since d is always an integer we could have phrased the two cases as d ≤ 13 and
d ≥ 14. However, as will be seen below, there is a sense in which the precise non-integer 13.5
is the sharp threshold. In any case, these results show that for d = 8, 9, 10, 11, 12, 13 (and likely
also d = 7), a random d-regular NAE-3SAT instance is unsatisfiable, yet this cannot be efficiently
refuted using the basic SDP relaxation.

In fact, our results are somewhat stronger than what is stated in Theorem 1.2. Let us define

f(d) =
9

8
− 3

8
·
(√
d− 1−

√
2
)2

d
,

a quantity that decreases on [3,∞), with f(13.5) = 1 and limd→∞ f(d) = 3/4. We show:

2In fact, the unsatisfiability threshold is more likely to be lower, specifically d ≥ 7, based on heuristics from
statistical physics. The “1RSB” prediction for the unsatisfiability threshold of random NAE-3SAT — which was
rigorously verified for NAE-kSAT, k ≥ k0, in [DSS16] — was determined to be at average degree 3 · 2.105 = 6.315 in
the Erdős–Rényi case [CNRZ03], and at degree at most 7 in the regular case [DRZ08] (albeit these predictions were
for the “coloring” version of NAE-3SAT without negations).
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• (See Theorems 5.6 and 5.7 for details.) Even when augmented with the triangle inequalities,
the SDP “thinks” that a random d-regular NAE-3SAT instance has a solution satisfying at
least an f(d)− ε fraction of the constraints; in particular, it thinks the instance is satisfiable
if d < 13.5. Indeed this holds for any d-regular NAE-3SAT instance of sufficiently large
constant girth.

• (See Theorem 4.12 for details.) Even the basic “eigenvalue bound” (a special case of the SDP
method) shows that a random d-regular NAE-3SAT instance has no solution satisfying at
least an f(d) + ε fraction of the constraints; in particular, it refutes satisfiability if d > 13.5.

2 Methodology, further generalizations, and related work

2.1 2XOR-SAT and semidefinite programming

One reason that semidefinite programming algorithms are particularly natural for NAE-3SAT is
that the CSP is essentially a form of 2XOR-SAT. Recall that the 2XOR-SAT CSP has constraints
on pairs of literals, with the constraint being satisfied if the literals are assigned unequal truth
values. Now for literals `1, `2, `3:

NAE(`1, `2, `3) satisfied ⇐⇒ exactly 2 of XOR(`1, `2), XOR(`2, `3), XOR(`3, `1) satisfied;

NAE(`1, `2, `3) unsatisfied ⇐⇒ exactly 0 of XOR(`1, `2), XOR(`2, `3), XOR(`3, `1) satisfied.

(In case all the literals are variables appearing positively, the resulting 2XOR-SAT instance is in
fact a “Max-Cut” instance.) If we convert an NAE-3SAT CSP with m constraints to a 2XOR-
SAT CSP with 3m constraints in the above way, every truth assignment satisfying a β fraction of
NAE-3SAT constraints satisfies a (2/3)β fraction of 2XOR-SAT constraints.

Indeed, the standard SDP relaxation for NAE-3SAT, first studied by Kann, Lagergren, and
Panconesi [KLP96], is nothing more than 3/2 times the basic Goemans–Williamson [GW95] SDP
for the associated 2XOR-SAT instance. We recall here the basic definitions:

Definition 2.1. Let I be an instance of 2XOR-SAT with m constraints on n variables, to be
assigned values in {±1}. We identify the instance with its (multi)set of constraints. Each constraint
is a triple (u, v, ξ) for u, v ∈ [n] distinct and ξ ∈ {±1}; this is thought of as the constraint xuxv = −ξ.
The SDP relaxation value is defined to be

SDP(I) = sup

 1

m

∑
(u,v,ξ)∈I

(
1

2
− 1

2
ξ〈Xu, Xv〉

) ∈ [0, 1],

where the sup is over all choices of vectors (Xv)v∈[n] satisfying 〈Xv, Xv〉 = 1 for all v. Equivalently,
instead of vectors, the Xv’s may be jointly (centered) Gaussian random variables, with 〈Xu, Xv〉 in-
terpreted as E[XuXv]. The quantity SDP(I) always upper-bounds OPT(I), the maximum fraction
of simultaneously satisfiable 2XOR-SAT constraints, since for any truth assignment x ∈ {±1}n we
may take the joint Gaussians Xu = xuZ, where Z is a standard Gaussian. The advantage of SDP(I)
is that while computing OPT(I) is NP-hard, one can compute SDP(I) (to additive accuracy 2−n)
in polynomial time.

Definition 2.2. A common algorithmic technique is to also enforce the triangle inequalities, mean-
ing to only take the sup over Xv’s satisfying

〈Xu, Xv〉+ 〈Xv, Xw〉+ 〈Xw, Xu〉 ≥ −1, 〈Xu, Xv〉 − 〈Xv, Xw〉 − 〈Xw, Xu〉 ≥ −1.

The resulting value, SDP4(I), is a tighter relaxation: OPT(I) ≤ SDP4(I) ≤ SDP(I).
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Definition 2.3. A related quantity is the Lovász theta function [Lov79]; for a graph G, the Lovász
theta function (of its complement), ϑ(G), is the least k such that there are centered joint Gaussians
(Xu) with 〈Xu, Xu〉 = 1 for all vertices u and 〈Xu, Xv〉 = − 1

k−1 for all edges (u, v). In particular,

if G is thought of as a Max-Cut instance, then SDP(G) ≥ 1
2 + 1

2
1

ϑ(G)−1
.

Definition 2.4. The SDP for 2XOR-SAT is also known to have a dual characterization [DP93]:

SDP(I) = inf
w∈Rn∑
u wu=0

{ n

4m
· λmax(LI + diag(w))

}
,

where LI denotes the Laplacian matrix for I (defined in Section 3.2), and λmax denotes the largest
eigenvalue. Note that by taking w = 0 we get an upper bound on SDP(I); we refer to this as the
eigenvalue bound,

EIG(I) =
n

4m
· λmax(LI) =

1

2d
· λmax(LI),

the latter equality holding in case I is d-regular. The certificate OPT(I) ≤ EIG(I) is easy to see; it
is a consequence of the definitions that OPT(I) = n

4m ·max{x>LIx : x ∈ {± 1√
n
}n}, and λmax(LI)

allows taking the max over all unit vectors.

2.2 Methodology and related work

To prove Theorem 1.2, we convert our random NAE3-SAT instances into random 2XOR-SAT
instances, and then try to analyze whether or not the SDP-value of these instances is as large
as 2

3 . (Recall that this corresponds to the SDP-value of the NAE3-SAT instances being as large
as 1.) There are a number of prior works on analyzing the Goemans–Williamson SDP on random
graphs (see below); however, our situation is a bit different. The main difference is that the
graphs underlying our random 2XOR-SAT instances are not uniformly random 2d-regular graphs,
but rather have a peculiar “triangle-structure”. Recall that they are generated by first choosing
a large random (3, d)-biregular graph (by randomly lifting Kd,3), then replacing each 3-regular
vertex on the left with a triangle on the right. Thus, locally, the resulting graphs look like the
graph on the right in Figure 2 (for d = 4). An additional small complication is that these random
“triangle-graphs” effectively get random edge-signings when the random literal-negations are taken
into account, converting the Max-Cut instance to a 2XOR-SAT instance. Finally, in the remainder
of the paper we will focus on the generalized problem in which triangles are replaced by c-cliques,
for c ≥ 3. This generalization does not correspond to any well-known CSP, but analyzing general c
turns out to be no harder than analyzing the c = 3 special case.

For the part of our main theorem showing that the simple eigenvalue bound succeeds as d
becomes large, we need to show tight bounds on the eigenvalues of the random “triangle-graphs”
(more generally, c-clique graphs) that arise in our model. If we simply had random d-regular graphs,
Friedman’s famous almost-Ramanujan theorem [Fri08] would have sufficed. Instead, we relate the
eigenvalues of our random graphs to those of a randomly lifted (c, d)-biregular bipartite graph. We
then use Bordenave’s recent reproof [Bor17] of Friedman’s theorem (revised to also include random
edge-signings), as well as the Ihara–Bass formula, to show that with high probability the nontrivial
spectrum of such random bipartite graphs is contained in ±[

√
d− 1 −

√
c− 1,

√
d− 1 +

√
c− 1].

Inspiration for these computations comes from [FM16].
For the part of our main theorem showing that large-value SDP solutions exist, the tools we use

come from a fairly recent line of work concerning “Gaussian waves” in infinite regular graphs [Elo09,
CGHV15, HV15]. This work can be seen as giving a way to convert eigenfunctions on the infinite
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regular tree (and other vertex-transitive infinite graphs) into Goemans–Williamson SDP solutions
— in fact, Lovász theta function solutions. These may be converted to such solutions on high-girth
finite graphs that locally resemble the infinite graphs. Several works in this area [CGHV15, HV15,
Csó16, Lyo17] used this method to show, e.g., that high-girth 3-regular graphs must contain large
independent sets, using techniques resembling the randomized rounding of independent-set SDPs
(cf. [KMS98]) and also local improvement techniques applicable to cubic graphs (cf. [HLZ04]).
These techniques were also used to show limits on the performance of SDP for Max-Cut, Min-
Bisection, and community detection problems in, e.g., [MS16, FM16]. See [BKM17] for similar
approaches in the context of graph-coloring, and [JMR16] for more on phase transitions for SDPs
in the context of community detection.

3 Preliminaries on graphs, lifts, and eigenvalues

3.1 Graphs, hypergraphs, and edge-labeled graphs

We begin with some general notation.
H will typically denote a simple (c, d)-biregular bipartite graph with c, d ≥ 2. The setting of

most interest to us is d ≥ c = 3. Sometimes we will refer to the vertices on the c-regular side as
constraints and the vertices on the d-regular side as variables. Figure 1 shows an example, K4,3,
with the variables depicted as circles and the constraints depicted as squares.

Figure 1: H = K4,3

We may also think of H as a c-uniform d-regular hypergraph, with the variables as vertices and
constraints as hyperedges. X will denote an edge-signed version of H (thought of as a bipartite
graph, not a hypergraph); i.e., one in which each edge of H is labeled with ±1. (In the unsigned
case, we think of all edges as being labeled +1.) We say that X is a “random signing” of H if it is
formed by independently labeling each edge of H with ±1, uniformly at random.

Given H, we will write G = GH for the (loopless multi-)graph formed by first thinking of H as
a hypergraph and then replacing each hyperedge by a c-clique. As a result, G is a (c− 1)d-regular
graph, called the primal graph for H. Given an edge-signed version X of H, we will write I = IX
for the primal graph of X, an edge-signed version of G defined as follows: whenever constraint a is
adjacent to variables i, j with edge-signs ξai, ξaj ∈ {±1}, we place the sign ξaiξaj on the resulting
{i, j} edge of G. We may think of I as a 2XOR-SAT instance, where the vertices are to be assigned
values xi ∈ {±1}, and an edge {i, j} with label ξ corresponds to the constraint xixj = −ξ.

In the special case of c = 3, we can think of X as a NAE-3SAT instance, where the variables
are to be assigned values xi ∈ {±1}, and a constraint a adjacent to variables i, j, k with labels
ξai, ξaj , ξak corresponds to the constraint that ξaixi, ξajxj , ξakxk are not all equal. In this case
there is a precise relationship between the NAE-3SAT instance X and the 2XOR-SAT instance I;
any assignment to the vertices satisfying exactly a β fraction of the NAE-3SAT constraints will
necessarily satisfy exactly a 2

3β fraction of the 2XOR-SAT constraints.
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3.2 Associated matrices

Given any of Y ∈ {H,X,G, I}, we will write AY for the adjacency matrix. More precisely, AY [i, j]
is the sum of the (positive and negative) edge-labels on all edges connecting i and j.

We will write DY for the diagonal degree matrix of Y , whose entry DY [i, i] equals the degree of
vertex i. (Both signed and unsigned edges count 1 toward the degree.) We write LY = DY − AY
for the Laplacian matrix of Y ; we also write LY (u) = (1− u2)1+ u2DY − uAY for the “deformed
Laplacian”, parameterized by u ∈ R, which reduces to the basic Laplacian when u = 1. (Here 1
denotes the identity operator.)

Finally, we will write BY for the non-backtracking matrix of Y . Recall that this matrix is
formed as follows: First, each undirected edge in Y is converted to two directed edges (both having
the same sign, in case Y is edge-signed). Then BY is the square (non-symmetric) matrix indexed
by the directed edges, in which BY [(i, j), (k, `)] entry is nonzero if and only if j = k and i 6= `, in
which case it equals the sign-label of (i, j).

3.3 Lifts

Suppose now that Y = (V,E) denotes any undirected (multi-)graph. For n ∈ Z+, an n-lift of Y is a
graph Yn whose vertex set is V ×[n] and whose edges consist of a perfect matching between {u}×[n]
and {v} × [n] for each edge {u, v} ∈ E. When the |E| perfect matchings are chosen independently
and uniformly at random, we call Yn a random n-lift of Y . Note that if Y is a d-regular graph,
then so is Yn, and if Y is a (c, d)-biregular bipartite graph, then so is Yn. If B (respectively, Bn)
denotes the non-backtracking matrix of Y (respectively, Yn), it is known that the multiset of Bn’s
eigenvalues contains the multiset of Y ’s eigenvalues. The remaining eigenvalues are referred to as
the “new” eigenvalues of Bn.

3.4 Eigenvalues

Given an N -dimensional matrix M , we write spec(M) ⊂ C for its spectrum, the cardinality-
N multiset of roots of its characteristic polynomial. We also write ρ(M) for its spectral radius,
max{|λ| : λ ∈ spec(M)}. The adjacency matrix of a (possibly edge-signed) graph is symmetric, and
hence its spectrum is real; the Laplacian is furthermore positive semidefinite, and hence its spectrum
is nonnegative. A non-backtracking matrix, however, will in general have complex spectrum.

We are particularly interested in bipartite graphs, so we record some facts concerning them
here. Suppose X is a possibly edge-signed bipartite graph, with vertex parts of size m ≥ n. Then
it is well known that

spec(AX) = {0 : with multiplicity m− n} ∪ {±λ : λ ∈ PS(AX)}

for some multiset PS(AX) ⊂ R≥0.3 Further, if X is (c, d)-biregular, we’ll have PS(A) ⊂ [0,
√
cd].

The set ±PS(AX) may be called the “nontrivial” part of AX ’s spectrum. A warning, though:
±PS(AX) is not the same as the “nonzero” part of AX ’s spectrum, since PS(AX) may contain 0
with positive multiplicity. Indeed, this happens in one of the simplest cases, as is well known:

Fact 3.1. Let H = Kd,c, the complete bipartite graph with vertex parts of size d ≥ c. Then PS(AH)
consists of c− 1 copies of 0 and 1 copy of

√
cd.

We also record below the spectrum of the non-backtracking matrix of Kd,c, which we’ll derive in
Section 4.1 using the Ihara–Bass formula. But first, some notation we’ll use heavily in this paper:

3We chose “PS” to stand for Positive Spectrum, notwithstanding our warning that it may contain 0.
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Notation 3.2. For c, d ≥ 2, we write

sc =
√
c− 1, sd =

√
d− 1, ρ1 = scsd, λ = sd + sc, λ = |sd − sc|, κ = (c− 1)d = ρ2

1 + s2
c .

We will often assume d ≥ c, in which case λ = sd − sc.

Proposition 3.3. Let B be the non-backtracking matrix of Kd,c, where d ≥ c ≥ 2, d 6= 2. Then

spec(B) =


±1 with multiplicity (c− 1)(d− 1) each;

±isc with multiplicity (d− 1) each;

±isd with multiplicity (c− 1) each;

±scsd with multiplicity 1 each;

and hence, ρ(B) = scsd = ρ1.

As described in Section 3.1, we will often consider forming the primal graph G of a (c, d)-
biregular graph H. It is simple to work out the relationship between the eigenvalues of H and
the eigenvalues of G; this is done in, e.g., [LS96, Section 4.1]. The analysis is unchanged for the
edge-signed variant, and it yields:

Proposition 3.4. Let X be an edge-signed (c, d)-biregular graph, and let I = IX be the correspond-
ing edge-signed primal graph. Then

spec(AI) = {λ2 − d : λ ∈ PS(AX)}.

Since I is κ-regular, where κ = cd− d, we can also conclude that

spec(LI) = {cd− λ2 : λ ∈ PS(AX)}.

3.5 The infinite biregular tree and distance-regular graph

Since a large random (c, d)-biregular graph looks locally like a tree, we will want to study the
infinite (c, d)-biregular tree, which we denoted by Td,c. More to the point, we will want to study
its (infinite) primal graph, which we denote by Gd,c. Fragments of these graphs, in the case c = 3,
d = 4, are pictured in Figure 2.

Figure 2: Fragments of the infinite biregular tree T4,3, and its primal graph G4,3

As shown by Ivanov [Iva83], the graphs Gd,c are precisely the infinite graphs G that are
distance-regular, meaning that there exist constants phj,k such that for every pair u, v ∈ V (G)
with distG(u, v) = h, the number of vertices w ∈ V (G) having distG(w, u) = j and distG(w, v) = k
is equal to phj,k. It is elementary to compute these quantities for Gd,c, and the results appears below.
Only the cases h = 0, 1 are truly essential for the paper, and the reader might like to verify them
while referring to Figure 2.
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Proposition 3.5. In the distance-regular graph Gd,c, recalling the notation

s2
c − 1 = c− 2, ρ2

1 = (c− 1)(d− 1), ρ2
1 + s2

c = κ = (c− 1)d, ρ2
1 − s2

c = (c− 1)(d− 2),

we have

p0
`,` =

{
1 if ` = 0

(ρ2
1 + s2

c)ρ
2(`−1)
1 if ` ≥ 1;

and, for h ≥ 1, 0 ≤ t ≤ h,

if h and t have the same parity: ph`,`+t = ph`+t,` =


0 if ` < h−t

2

1 if ` = h−t
2

ρ2`
1 if ` > h−t

2 and t = h

(ρ2
1 − s2

c)ρ
2(`−(h−t+2

2
))

1 if ` > h−t
2 and t 6= h;

if h and t have opposite parity: ph`,`+t = ph`+t,` =

{
0 if ` < h−t+1

2

(s2
c − 1)ρ

2(`−h−t+1
2

)

1 if ` ≥ h−t+1
2 ;

and finally, phj,k = 0 otherwise.

The spectrum of the adjacency “matrix” (operator) of Gd,c — and indeed, the whole “spectral
measure” — has been known since the early ’80s. (There are appropriate definitions for these
terms, generalizing the definitions in the finitary case. We will not give them here since, strictly
speaking, this paper does not rely on them.) In particular,

spec(ATd,c) = {0} ∪ ±[λ, λ], spec(AGd,c) = [λ2 − d, λ2 − d]; (1)

(the latter holding under the assumption d ≥ c; if d < c then also −d ∈ spec(AGd,c)). The history
of these results can be found in [MW89, Section 7E] and [GM88, Section 5.2], the latter of which
also shows that the spectral measures of large random (c, d)-biregular graphs converge to a measure
with support spec(ATd,c) (and similarly for their primal graphs and spec(AGd,c)).

4 Eigenvalues of random lifts and signings

Generalizing Friedman’s celebrated characterization of the spectrum of random d-regular random
graphs [Fri08], Bordenave recently proved the following theorem:

Theorem 4.1. ([Bor17, Theorem 20].) Let Y be a connected multigraph (with more edges than
vertices) having non-backtracking matrix B. Fix ε > 0. Let Y n be a random n-lift of Y , and let
Bn be its non-backtracking matrix. Then

Pr[Bn has a new eigenvalue of magnitude ≥
√
ρ(B) + ε] = on→∞(1).

We will need a variant of this theorem in which the graph is randomly lifted and then randomly
signed. The statement and proof are actually a little bit simpler.

Theorem 4.2. Let Y be a connected graph (with more edges than vertices) having non-backtracking
matrix B. Fix ε > 0. Let Xn be a random signing of a random n-lift Y n of Y , and let Bn denote
the non-backtracking matrix of Xn. Then

Pr[ρ(Bn) ≥
√
ρ(B) + ε] = on→∞(1).
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The proof, which closely follows that of [Bor17, Theorem 20], appears in Appendix A.

We will also quote some basic results about the scarcity of cycles in randomly lifted graphs:

Theorem 4.3. (Greenhill–Janson–Ruciński [GJR10, Lemma 5.1].) Let Y n be as in Theorem 4.1 or
Theorem 4.2, and write Zk for the number of length-k cycles in Y n. Let P 2,P 3, . . . be independent
Poisson random variables with P k of mean wk/(2k), where wk = tr(Bk) is the number of closed
non-backtracking walks in Y . Then for any g ∈ N+, the random variables (Z2,Z3, . . . ,Zg) converge
jointly in distribution to (P 2,P 3, . . . ,P g). In particular, for a fixed g and n sufficiently large, there
is a positive probability (depending only on g and Y ) that Y n has girth exceeding g.

Theorem 4.4. (Easily extracted from the proof of [Bor17, Lemma 24].) Let Y n be as in Theo-
rem 4.1 or Theorem 4.2 and write d for the maximum degree of Y . Call a vertex of Y n g-bad if
its distance-g neighborhood contains a cycle. Then the expected number of g-bad vertices in Y n is
O((d+ 1)g).

4.1 The Ihara–Bass formula

The Ihara–Bass formula relates the eigenvalues of a graph’s adjacency matrix and its non-backtracking
matrix. Originally proved by Ihara [Iha66] for regular graphs, it was subsequently generalized to
irregular graphs [Has92, Bas92, ST96, KS00], vertex-weighted graphs [Kem16], and most gener-
ally, edge-weighted graphs [WF09, FM16]. We will need the last of these, but only in the special
case that all edge-weights are ±1. In this case, the resulting formula looks identical to the usual
(irregular, unweighted) Ihara–Bass formula:

Theorem 4.5. ([WF09, Theorem 2], specialized to all edge-weights ±1.) Let X be a edge-signed
graph, having adjacency matrix A, non-backtracking matrix B, and deformed Laplacian L(u) =
(1− u2)1+ u2D − uA. Then for all real u 6= ±1,

det(1− uB) = det(L(u)) · (1− u2)#E(X)−#V (X).

In the special case when X is (c, d)-biregular, one can use this formula to work out a very
explicit mapping between the eigenvalues of A and the eigenvalues of B. The computations appear
in [Kem16, Section 4.2]; that paper only considered unsigned edges, but the result is the same
because the Ihara–Bass formula is identical. Recalling the notation from Section 3.4:

Theorem 4.6. (Follows from [Kem16, Theorem 6] using Theorem 4.5.) Let X be an edge-signed
(c, d)-biregular graph, with m vertices on the c-regular side and n vertices on the d-regular side,
so e = cm = dn is the number of edges. Let A denote the adjacency matrix of X. Then B, the
non-backtracking matrix of X, has the following 2e eigenvalues:

• e− (m+ n) copies each of ±1.

• m− n copies each of ±isc.

• 4n “nontrivial” eigenvalues, all roots of pλ(u) = u4 + (s2
c + s2

d − λ2)u2 + ρ2
1 for λ ∈ PS(A).

We would now like to understand the location of the 4 roots of pλ(u) in C as λ varies in [0,
√
cd].

To do this, write

sc =
λ− λ

2
, sd =

λ+ λ

2
, α =

λ2 − λ2

2
, β =

λ2 − λ2

2
, U = u2.

9



Then

pλ(u) = U2 − (α+ β)U +

(
α− β

2

)2

,

which has roots

U =
1

2

(√
α±

√
β
)2
.

If λ2 ≤ λ2 ≤ λ2
then β ≤ 0 ≤ α and

|U | = 1

2

(√
α

2
+
√
−β

2
)

=
α− β

2
=
λ

2 − λ2

4
= scsd = ρ1.

On the other hand, if λ2 6∈
[
λ2, λ

2
]
, then α and β have the same sign and

|U | = 1

2
(|α|+ |β| ± 2|α| · |β|), the larger of which exceeds

λ
2 − λ2

4
= ρ1.

We conclude:

Proposition 4.7. For real λ, the roots of pλ(u) simultaneously have magnitude at most
√
ρ1 if and

only if λ2 ∈
[
λ2, λ

2
]

(i.e., λ ∈ ±
[
λ, λ

]
).

Also, when λ = 0 we have pλ(u) = u4 + (s2
c + s2

d)u
2 + s2

cs
2
d, and when λ =

√
cd we have

pλ(u) = u4 − (ρ2
1 + 1)u2 + ρ2

1. Thus we can directly verify:

Proposition 4.8. For λ = 0, the 4 roots of pλ(u) are ±isc, ±isd. And, for λ =
√
cd, the 4 roots

of pλ(u) are ±ρ1, ±1.

At this point, we can combine Theorem 4.6, Fact 3.1, and Proposition 4.8 to obtain Proposi-
tion 3.3 as stated in Section 3.4. We may furthermore put together all the results in this section:

Theorem 4.9. Let d ≥ c ≥ 2, d 6= 2. Fix ε > 0. Let Xn be a random signing of a random n-lift
of the complete bipartite graph Kd,c, and let An denote its adjacency matrix. Then

Pr
[
PS(An) 6⊂ [λ− ε, λ+ ε]

]
= on→∞(1).

Proof. We apply Theorem 4.2 with Y = Kd,c and some sufficiently small ε′ = ε′(ε, c, d) > 0. The
non-backtracking matrix B of Y has spectral radius ρ1, by Proposition 3.3. Thus if Bn is the
non-backtracking matrix of the randomly signed random lift Xn of Y , we get

Pr
[
ρ(Bn) ≥ √ρ1 + ε′

]
= on→∞(1),

Thus with probability 1− o(1) we have ρ(Bn) <
√
ρ1 + ε′. In this case, taking ε′ sufficiently small

and using the fact that the roots of a polynomial are continuous in its coefficients, Proposition 4.7
and Theorem 4.6 imply that PS(An) ⊂ [λ− ε, λ+ ε]. The proof is complete.

Remark 4.10. This theorem is “to be expected” in light of the Godsil–Mohar work on spectral
convergence mentioned at the end of Section 3.5. But of course one needs the hard work of
Bordenave’s Theorem to show that random (c, d)-biregular graphs typically do not any eigenvalues
outside the spectral bulk. In fact, to emphasize that care is needed, we remark that the random
signing in Theorem 4.9 is essential; without it, it’s not hard to show that PS(An) will contain 0
with probability 1.
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Corollary 4.11. Let d ≥ c ≥ 2, d 6= 2. Fix ε > 0. Let Xn be a random signing of a random n-lift of
the complete bipartite graph Kd,c, let In be the associated 2XOR-SAT instance (as in Section 3.1),
and let Ln be its Laplacian matrix. Then

Pr
[
Ln has an eigenvalue outside [(1− ρ1)2 − ε, (1 + ρ1)2 + ε]

]
= on→∞(1).

Proof. This follows from Proposition 3.4, cd− λ2
= (1− ρ1)2, and cd− λ2 = (1 + ρ1)2.

Corollary 4.11 now directly implies the following:

Theorem 4.12. Let d ≥ c ≥ 2, d 6= 2. Fix ε > 0. Let In be a random 2XOR-SAT instance as in
Corollary 4.11, so In is κ-regular (κ = (c− 1)d) with cn variables and

(
c
2

)
dn constraints. Then

Pr

[
EIG(In) ≥ (1 + ρ1)2

2κ
+ ε

]
= on→∞(1),

where ρ1 =
√
c− 1

√
d− 1.

In case c = 3, if we view In as a random d-regular NAE-3SAT instance on 3n variables (chosen
according to the random lift/sign model), we have

Pr

[
EIG(In) ≥ 9

8
− 3

8
·
(√
d− 1−

√
2
)2

d
+ ε

]
= on→∞(1),

As mentioned in Section 1.1, the quantity 9
8 −

3
8 ·

(
√
d−1−

√
2)

2

d decreases from 9
8 to 3

4 on [3,∞)
and takes value 1 at d = 13.5. Thus the above theorem shows that the basic eigenvalue bound
refutes a random d-regular instance of NAE-3SAT (whp) provided d > 13.5.

5 SDP solutions for random instances

As a guide for our construction, let us imagine SDP solutions for the Max-Cut problem on the
infinite graph Gd,c. (As these imaginings are only for intuition’s sake, we will not be completely
formal.) To lower bound SDP(Gd,c), it is necessary and sufficient to construct jointly standard
Gaussian random variables (Xv)v∈V (Gd,c) for which the correlation E[XuXv] — “on average”, over
all edges {u, v} ∈ E(Gd,c) — is very negative. It’s simpler, and stronger, to look for such a Gaussian
process in which E[XuXv] = % for every edge {u, v}, with % as negative as possible. Such solutions
would give an upper bound for the Lovász theta value, ϑ(Gd,c) ≤ 1−1/%, while still giving an SDP
lower bound of SDP(Gd,c) ≥ 1

2 −
1
2%. In turn, we would have such a Gaussian process provided it

satisfied
1

κ

∑
u∼v

Xu = %Xv for all v ∈ V (Gd,c), (2)

where, as before, κ = (c−1)d is the degree of each v. This is the “eigenvalue equation” for AGd,c for
λ = κ%. Thus one may suspect that Equation (2) is possible whenever λ = κ% ∈ spec(AGd,c). Given
spec(AGd,c) as in Equation (1), we may therefore hope to obtain the desired Gaussian process for
any

% ∈

[
λ2 − d
κ

,
λ

2 − d
κ

]
=

[
1− (1 + ρ1)2

κ
, 1− (1− ρ1)2

κ

]
; (3)

11



in particular, for the most negative such value,

%∗ = 1− (1 + ρ1)2

κ
. (4)

This would lead to the lower bound

SDP(Gd,c) ≥
1

2
− 1

2
%∗ =

(1 + ρ1)2

2κ
.

In fact, since Gd,c is a vertex-transitive graph, it follows from a theorem of Harangi and Virág that
such Gaussian processes do exist, and they can be constructed in a simple fashion as “linear block
factors of IIDs”:

Theorem 5.1. ([HV15, Theorem 4].) Let G be an infinite vertex-transitive graph with adjacency
operator AG. Then for each λ ∈ spec(AG), there is an Aut(G)-invariant standard Gaussian process
(Xv)v∈V (G) for which

∑
u∼vXu = λXv holds for all v ∈ V (G). Furthermore, the process can

be approximated (in distribution) by a “linear block factor of IID process”, meaning one that is
constructed as follows: (Zv)v∈V (G) are chosen as IID standard Gaussians, and then Xv is set to
be a fixed linear function f of those Zu’s which have distG(u, v) ≤ L, where L is a finite “radius”.

As mentioned in Section 2.2, results of this nature date back at least to the work of Elon [Elo09],
who constructed such “Gaussian waves” on the infinite d-regular tree Td. An important aspect of
Theorem 5.1 is the “block” aspect, meaning that each Xv is defined just from a “local”, finite
number of Zu’s. Thus we can hope to use the construction for (primal graphs of) large but finite
(c, d)-biregular graphs with large girth, which locally look tree-like.

That said, we cannot quite use the Theorem 5.1 as a black box for our purposes, for a few
reasons. One reason is that we want to apply it to large random biregular graphs, which will not
strictly speaking have low girth, but will merely have “few”, “far apart” short cycles. Second, we
will be constructing SDP solutions for edge-signed graphs, a slight generalization of Theorem 5.1’s
framework. Finally, it will be nice for us to reason about E[XuXv] not just for adjacent u, v.

On the other hand, the construction of the linear block factor of IID process for Gd,c is a fairly
straightforward generalization of earlier concrete constructions for Td such as the one in [CGHV15].
We present it in the next section.

5.1 Linear factors of IIDs

Here we essentially prove Theorem 5.1 in the special case of Gd,c. The proof closely follows [CGHV15,
Section 3].

Theorem 5.2. Let c, d ≥ 2 and let λ ∈ spec(AGd,c)
◦ = (λ2−d, λ2−d). Then there exist L ∈ N and

reals a0, a1, . . . , aL such that the following holds: When (Zv)v∈V (Gd,c) are IID standard Gaussians,
and the random variables (Xv)v∈V (Gd,c) are formed via

Xv =
L∑
`=0

∑
w∈V (Gd,c)
dist(w,v)=`

a`Zw, (5)

then we have E[X2
v] = 1 for all v (so that the Xv’s are jointly standard Gaussians), and E[XuXv] = λ

κ
for all {u, v} ∈ E(Gd,c). In other words (cf. Equation (3)):

for any 1− (1 + ρ1)2

κ
< % < 1− (1− ρ1)2

κ
we can achieve E[XuXv] = % ∀{u, v} ∈ E(Gd,c).

(6)
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Proof. Let us temporarily relax the requirement that L be finite. To that end, we will consider
defining

Xv = γ ·
∞∑
`=0

∑
w∈V (Gd,c)
dist(w,v)=`

r`Zw, (7)

for constants γ ∈ R+, r ∈ R. It follows that for two vertices u, v ∈ V (Gd,c) with dist(u, v) = h, we
have

E[XuXv] = γ2 ·
∞∑

j,k=0

phj,kr
j+k. (8)

In this proof we focus only on h = 0, 1, saving h > 1 for Theorem 5.4. By Proposition 3.5 we have

#{w : dist(w, v) = `} = p0
`,` =

{
1 if ` = 0,

(ρ2
1 + s2

c) · ρ
2(`−1)
1 if ` > 0,

where recall ρ2
1 + s2

c = (c− 1)d and ρ2
1 = (c− 1)(d− 1). Thus

E[X2
v] = Var[Xv] = γ2 ·

(
1 +

∞∑
`=1

(ρ2
1 + s2

c) · ρ
2(`−1)
1 · r2`

)
= γ2 · 1 + (scr)

2

1− (ρ1r)2
, provided |r| < ρ−1

1 .

(9)
By choosing γ such that

γ2 =
1− (ρ1r)

2

1 + (scr)2

we get Var[Xv] = 1. On the other hand, for fixed u, v with dist(u, v) = 1 we have

#{w : dist(u,w) = `1, dist(v, w) = `2} = p1
`1,`2 =


(s2
c − 1) · ρ2(`−1)

1 if `1 = `2 > 0,

ρ2`1
1 if `2 = `1 + 1,

ρ2`2
1 if `1 = `2 + 1,

0 else,

where recall s2
c − 1 = c− 2. Thus

E[XuXv] = γ2 ·

( ∞∑
`=1

(s2
c − 1) · ρ2(`−1)

1 · r2` +
∞∑
`=0

2 · ρ2`
1 · r2`+1

)
= γ2 · 1 + (scr)

2 − (1− r)2

1− (ρ1r)2
, (10)

and so by our choice of γ we conclude

E[XuXv] = 1− (1− r)2

1 + (scr)2
.

Calculus shows that the expression on the right is increasing for r in the range [−s−2
c , 1], which

is a superset of the range that Equation (9) allows us for r, namely (−ρ−1
1 , ρ−1

1 ). This establishes
Equation (6); the only catch is that we haven’t used a finite L. But this can be achieved by
truncating the sum in Equation (7) to ` ≤ L for L sufficiently large. This truncation only changes
Equations (9) and (10) by a quantity that decays like (ρ1r)

L. Thus the change in E[XuXv] from
truncation can be made arbitrarily small, and this is acceptable for the conclusion Equation (6)
because the desired interval of %’s is open.
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Corollary 5.3. Theorem 5.2 also holds for the primal graph I of any edge-signed version X of Td,c
(as defined in Section 3.1), in the sense of having E[XuXv] = ξuv% for all {u, v} ∈ E(I), where
ξuv denotes the sign of edge {u, v}.

Proof. Assume we have signs ξav ∈ {±1} for each constaint/variable edge {a, v} in X, and therefore
signs ξuv = ξauξav for each edge {u, v} in I. It’s clear that for any closed walk in the tree X, the
product of the edge-signs along the walk is 1; by construction, it follows that the same is true in I.
Thus for any u, v ∈ V (I) (not necessarily adjacent) we can unambiguously define ξ[u ↔ v] as the
product of edge-signs along any uv-path in I. We now alter the construction in Equation (7) as
follows:

Xv = γ ·
∞∑
`=0

∑
w∈V (Gd,c)
dist(w,v)=`

ξ[w ↔ v]r`Zw,

Clearly Var[Xv] is unchanged. As for E[XuXv], the contribution from each Zw now yields an
additional factor of ξ[w ↔ u]ξ[w ↔ v] = ξ[u↔ v] = ξuv. Thus each E[XuXv] changes by a factor
of ξuv, as desired. The rest of the proof is the same.

Theorem 5.4. In the L = ∞ setting of Theorem 5.2, we in fact obtain, for all r ∈ (−ρ−1
1 , ρ−1

1 )
and all u, v ∈ V (Gd,c),

E[XuXv] = rh
(

1 +
h(1− r)(1 + s2

cr)

1 + (scr)2

)
, where h = dist(u, v).

(The r = 0 case is of course trivial, with Xv = Zv.)

Proof. Allowing L to be infinite and returning to Equation (8): for u, v ∈ V (Gd,c) with dist(u, v) = h,
one can use Proposition 3.5 to show (calculations omitted) that

E[XuXv] = γ2 · r
h(1 + (scr)

2 + h(1− r)(1 + s2
cr))

1− (ρ1r)2

provided |r| < ρ−1
1 . The result follows.

Remark 5.5. One can show that the expression in Theorem 5.4 has the property that its absolute
value is a strictly decreasing function of h for every r 6= 0. (Indeed, it decreases exponentially.) This
is the key takeaway of the theorem, implying that in the setting of Corollary 5.3, |E[XuXv]| ≤ |%|
for all distinct pairs u, v ∈ I (with equality when {u, v} ∈ E(Gd,c)).

5.2 SDP solutions for randomly lifted/signed graphs

In this section, let us fix d ≥ c ≥ 2, a small ε > 0,

% = 1− (1 + ρ1)2

κ
+ ε,

and an L = L(ε, c, d) such that Theorem 5.2 and Corollary 5.3 hold. Since each Xv constructed
therein depends only on the Zv’s at distance at most L in Gd,c (and hence distance at most 2L
in Td,c), we see that the exact same construction works equally well on any finite primal graph
constructed from a (c, d)-biregular graph of girth exceeding 4L. Thus (using also Remark 5.5) we
immediately obtain:
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Theorem 5.6. Let H be any edge-signed (c, d)-biregular graph of girth exceeding 4L and let I be
its associated primal graph, with edge signs ξuv, {u, v} ∈ E(I). Then one can assign joint standard
Gaussians Xv to the vertices v ∈ V (I) such that E[XuXv] = ξuv% for each edge {u, v} ∈ E(I).
Furthermore, |E[XuXv]| ≤ |%| for all distinct u, v ∈ V (I). As consequences:

(i) If H is unsigned, ϑ(I) ≤ 1− 1/%.

(ii) If we view I as a 2XOR-SAT instance, we have SDP4(I) ≥ 1
2 −

1
2% = (1+ρ1)2

2κ − ε.

(iii) If c = 3 and we view I as a d-regular NAE-3SAT instance, we have SDP4(I) ≥ 1
3 −

1
3% =

9
8 −

3
8 ·

(
√
d−1−

√
2)

2

d − ε.

We have the following corollary:

Theorem 5.7. Let Y be a (c, d)-biregular bipartite graph and let Y n be a random n-lift of Y .
Let Hn denote an arbitrary edge-signing of Y n, and In its associated primal graph. Then:

1. With positive probability (depending only on d and ε), Items (i) to (iii) of Theorem 5.6 all
hold.

2. With high probability, Items (ii) and (iii) of Theorem 5.6 hold with an additive loss of O(1/n).

Proof. The first statement is an immediate consequence of Theorem 4.3. As for the second state-
ment, Theorem 4.4 and Markov’s inequality imply that, with high probability, only an O((d +
1)2L+2)/n = O(1/n) fraction of vertices in Y n are “(2L + 2)-bad” (i.e., have a cycle within their
distance-(2L+ 2) neighborhood). Assuming this holds, we use the linear block factors of IID solu-
tion from Theorem 5.2 and Corollary 5.3 but with a small twist: For each vertex v that is 2L-bad
in Y n, rather than using Equation (5) we simply set Xv = Z ′v, where the random variables Z ′v are
new standard Gaussians independent of all other random variables. Now for the 1−O(1/n) fraction
of “(2L+ 2)-good” vertices, all their neighbors are still 2L-good and thus are using the linear block
factors of IID solution. We therefore still have E[XuXv] = ξuv% for each edge {u, v} ∈ E(I) where
u or v is (2L + 2)-good. Furthermore, we still have |E[XuXv]| ≤ |%| for all distinct u, v ∈ V (I),
since E[XuXv] = 0 when one of u or v is 2L-bad. The second statement in the theorem therefore
follows.

6 Conclusions

In this work we have shown a sharp threshold for the SDP-satisfiability of random d-regular NAE-
3SAT instances in the model of random lifts. Some open questions that remain are the following:

• Can we show similar sharp threshold results in the configuration model? The main challenge
is proving Friedman-style bounds on the spectra of random (c, d)-biregular bipartite graphs
in this model. An advantage to doing this would be the potential to show similar sharp
thresholds for 2-coloring random d-regular 3-uniform hypergraphs (i.e., random d-regular
NAE-3SAT without negations).

• Can we show similar sharp threshold results in the Erdős–Rényi random model?

• Can our analysis of the 2XOR-SAT SDP / Lovász theta function for the infinite biregular
tree Td,c, and its primal graph Gd,c be extended to other interesting classes of infinite graphs
(say, vertex-transitive)? Are there application to other finite CSPs?
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• A difficult but important open question: can we analyze the performance higher-degree “Sum
of Squares” relaxations for refuting random sparse CSPs (that do not support pairwise-
uniform distributions)? Even analyzing the degree-4 Sum of Squares relaxation for NAE-
3SAT or graph 3-colorability seems very challenging.
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A Bordenave’s Theorem for random signed lifts

In this appendix we will prove the following theorem.

Theorem (Restatement of Theorem 4.2). Let Y be a connected graph (with more edges than
vertices) having non-backtracking matrix B. Fix ε > 0. Let Xn be a random signing of a random
n-lift Y n of Y , and let Bn denote the non-backtracking matrix of Xn. Then

Pr[ρ(Bn) ≥
√
ρ(B) + ε] = on→∞(1).

Our theorem requires minor modifications to the trace-method proof of [Bor17, Theorem 20],
and we follow it closely. The differences occur because [Bor17, Theorem 20] pertains to the spectrum
of unsigned lifts, and for that reason the arguments therein must take into account the uninteresting
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top eigenspace of the non-backtracking matrix; this introduces some technical complications. Since
we are working with randomly signed edges, we need not worry about these eigenspaces, and
our arguments will be somewhat pared down (though to our knowledge they cannot be extracted
from [Bor17] in a black-box fashion).

A.1 Setup and notation

We set the stage for the proof by introducing some notation and definitions. Let Y = (V,E) be an
undirected graph, and let ~E be the set of directed edges associated with E, so that

~E = {(u, v) : {u, v} ∈ E},

and | ~E| = 2|E|. To limit confusion, we will use plain, bold letters e to denote edges in E and
decorated bold letters ~e to denote arcs in ~E. For an arc ~e = (u, v), we let (~e)−1 = (v, u).

Let n ∈ Z+, let Yn = (Vn, En) be an n-lift of Y as defined in Section 3.3, and let Xn =
(Vn, En, ξn) be random signing of Yn with signs ξn : En → R.4 In the n-lift, each edge e ∈ En (arc
~e ∈ ~En) is associated with an edge {u, v} ∈ E (arc (u, v) ∈ ~E), and with a pair of labels i, j ∈ [n],
so that e = {(u, i), (v, j)} (~e = ((u, i), (v, j)). Again to limit confusion, we will use non-bold, plain
letters to denote edges e ∈ En and decorated, non-bold letters to denote arcs ~e ∈ ~En. We let SEn be
the set of tuples of |E| permutations on [n]. Each n-lift is associated with some σ = {σe}e∈E ∈ SEn ,
so that En = {{(u, i), (v, σu,v(i))}} (where we take u to proceed v lexicographically, in order to
ensure that the bijection between σ and lifts is unique).5 We sometimes refer to the lift specified
by σ ∈ SEn as Yn(σ).

We also define Bn to be the weighted non-backtracking matrix of Xn as in Section 3.2, so that
for directed edges (u, v), (x, y) ∈ ~En,

Bn[(u, v), (x, y)] = ξn({u, v}) · 1[v = x] · 1[u 6= y].

We will apply the trace method to Bn; that is, we will relate ρ(Bn) to the expected trace of a
power of Bn.

Fact A.1. If A ∈ Cn×n is a random complex matrix, m, ` ∈ Z+, ε, c ∈ R+, and E[tr((A`(A`)∗)k)] ≤
R2m`, then for ` ·m ≥ c

εR log n and ε < R/2,

Pr[ρ(A) ≥ R+ ε] ≤ n−c

Proof. This follows by noticing that ρ(A)` ≤ supx∈Rn
‖A`x‖2
‖x‖2 = ‖A`(A`)∗‖1/2, and then applying

Markov’s inequality:

Pr[‖A`(A`)∗‖1/2` ≥ t] ≤ E[tr((A`(A`)∗)m)]

t2m`
≤
(
R

t

)2m`

,

and choosing t = R+ ε with 2ε < R,(
1

1 + ε/R

)2m`

≤
(

1− ε

2R

)2m`
≤ exp

(
−εm`

R

)
for ` ·m ≥ c

εR log n the conclusion follows.

4In our setting, we will choose ξn(e) ∈ {±1} independently and uniformly for each e ∈ En.
5Again, in our setting we will choose each σe uniformly at random in Sn.
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In our computations, we will bound the contribution of sequences of half-edges (so as to be
consistent with [Bor17]).

Definition A.2 (half-edge). A half-edge γ is given by an arc (u, v) ∈ ~E, and an index i ∈ [n]
corresponding to the index of u. We think of γ = ((u, v), i) as an arc leaving the ith copy of u in
the lift, and going to vertex v at some unspecified index; colloquially, γ = ((u, i), (v, ?)).

We call the set of all possible half-edges Π. In the interest of promoting clarity, we point out
that Π does not depend on the specific choice of lift, σ.

Definition A.3 (valid sequence of half-edges). We will say that a sequence of half-edges (γ1, . . . , γ2k)
is valid if it satisfies the following constraints:

1. Admissibility of pairs: consecutive pairs of half-edges correspond to the same edge in Y .
Formally, for each t ∈ [k] with γ2t−1 = (~e2t−1, i2t−1) and γ2t = (~e2t, i2t), we have that
~e2t−1 = (~e2t)

−1.

2. Consistency: if two half-edges are paired once, they remain paired for the remainder of the
sequence. Formally, if there exists t∗ such that the half-edge g = γ2t∗−1 is succeeded by the
half-edge h = γ2t∗ , then for all t such that γ2t−1 = g, we must also have γ2t = h. Similarly,
for all t with γ2t = g, we must also have γ2t−1 = h.

3. Consecutiveness: the sequence of half-edges, when glued together, must correspond to a valid
walk. Formally, for every t, if we have γ2t = ((u2t, v2t), i2t) and γ2t+1 = ((v2t+1, u2t+1), i2t+1),
then we must have v2t+1 = v2t and i2t+1 = i2t.

Colloquially, if two half-edges γ = (e, i), γ′ = ((e)−1, j) appear consecutively in a sequence with
γ in an odd position and γ′ in an even position, we will say that they are glued together to give the
edge {(e1, i), (e2, j)} (where e1, e2 are the first and second endpoints of e, respectively).

Definition A.4 (non-backtracking sequence). A sequence of half-edges (γ1, . . . , γk) is called non-
backtracking if it does not define a walk that backtracks; that is, for each t ∈ [k], if γ2t = (e2t, i2t)
and γ2t+1 = (e2t+1, i2t+1), we require that e2t 6= e2t+1.

We define Γ2k to be the set of all valid, non-backtracking sequences of 2k half-edges.

A.2 Walk decomposition

For e = {u, v} ∈ E, define Me to be the n×n signed permutation matrix which encodes σe, so that
(Me)ij = ξ({(u, i), (v, j)}) if and only if σe(i) = j. Further, for two half edges γ = (~e, i), γ′ = (~f , j),

we let Mγ,γ′ = 1[~e = (~f)−1] ·1[σe(i) = j] · ξ((e1, i), (e2, j)) (where e is the undirected version of ~e).

For two arcs ~e, ~f ∈ ~En, let Γ2k
~e, ~f

be the set of all valid, non-backtracking sequences of 2k half-

edges (γ1, . . . , γ2k), such that γ1, γ2 form e when glued together, with the direction of ~e specified
by γ1, and such that γ2k−1, γ2k form ~f when glued together, with the direction of ~f specified by
γ2k−1. We have by definition that

(Bk
n)ef =

∑
γ∈Γ2k+2

~e,~f

k∏
s=1

Mγ2s−1γ2s , (11)

since if a sequence γ is not valid or non-backtracking, it will have value 0.
We now define tangles, which are undesirable, low-probability walk structures (we will be able

to discard their contribution to Equation (11)).
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Definition A.5 (tangle-free). For a positive integer `, a graph G is `-tangle free if it contains at
most one cycle in every neighborhood of radius at most `. A valid sequence γ ∈ Γ2k is `-tangle free
if the graph given by the edges and vertices visited by γ does not contain more than one cycle in
any neighborhood of radius at most `.

The following lemma from [Bor17] proves that with high probability, Yn is `-tangle free.

Lemma A.6 ([Bor17, Lemma 24]). If ` ≤ κ logd−1 n with κ ∈ [0, 1/4] and d the maximum degree
of a vertex in Y , then with high probability Yn is tangle-free.

Finally, we will require the following definition.

Definition A.7. A valid sequence γ is even if the walk it induces contains every undirected edge
with even multiplicity.

A.3 Bounding the expectation of a single walk

Now, we bound the expectation of the product of entries along a walk.
For a sequence γ = (γ1, . . . , γ2`) of length 2`, with γt = ((ut, vt), it), let Eγ be the set of lifted

edges in γ,
Eγ = {{(u2t−1, i2t−1), (v2t−1, i2t)} | t ∈ [k]}.

Proposition A.8. Suppose that γ is a valid sequence of length 2k �
√
n. Let ` < 1

4 logd−1 n. Then
we have

E
σ,ξ

[
k∏
s=1

Mγ2s−1γ2s

]
≤ 1[γ even] · (1 + on(1)) ·

(
1

n

)|Eγ |
.

Proof. Consider some valid sequence of half-edges γ = (γ1, . . . , γ2k), and let γt = ((ut, vt), it) and
~et = (ut, vt), et = {ut, vt} for convenience. We have that

E
σ,ξ

[
k∏
s=1

Mγ2s−1γ2s

]
= E

σ,ξ

∏
e∈γ

∏
t∈[k]

e2t−1=e

Mγ2t−1γ2t

 =
∏
e∈γ

E
σ,ξ

 ∏
t∈[k]

e2t−1=e

Mγ2t−1γ2t

 , (12)

since for e 6= e′, σe and σe′ are independent, and by the independence of ξn. Expanding the entries
of M according to M ’s definition,

eq. (12) =
∏
e∈γ

E
σ,ξ

 ∏
t∈[k]

e2t−1=e

1[σe2t−1(i2t−1) = i2t] · ξ((u2t−1, i2t−1), (v2t−1, i2t))

 . (13)

By the independence of the signing ξ, we have that the expectation of any sequence in which any
(undirected) edge is visited an odd number of times is 0. Assimilating this fact,

eq. (13) = 1[γ even] ·
∏
e∈γ

E
σ

 ∏
t∈[k]

e2t−1=e

1[σe2t−1(i2t−1) = i2t]

 . (14)

22



Now, suppose that ke distinct lifted copies of the edge e ∈ E appear in γ. Since γ is consistent, and
because we may assume every edge appears with even multiplicity, the term within the expectation
just corresponds to fixing ke edges of a permutation on n elements. Thus we simplify,

eq. (14) = 1[γ even] ·
∏
e∈γ

(n− ke)!

n!
≤ 1[γ even] ·

∏
e∈γ

(
1

n

(
1 +

2ke
n

))ke
, (15)

where to obtain the last inequality we have used that for i ≤ ke �
√
n,

1

n− i
≤ 1

n

(
1 +

2i

n

)
≤ 1

n

(
1 +

2ke
n

)
.

And now since
∑

e∈γ ke = |Eγ | is the number of distinct lifted edges in γ, and the number of base
edges is at most the number of lifted edges,

≤ 1[γ even] ·
(

1

n

)|Eγ |(
1 +

2k

n

)2k

. (16)

Using that 2k �
√
n we obtain our conclusion.

A.4 Counting walks

To apply Fact A.1, we will need to bound the trace of a power of B`
n(B`

n)∗. Since the trace
corresponds to a sum over walks, and because in Appendix A.3 we have a bound on the expectation
of each walk as a function of the number of distinct edges and the evenness of the walk, we have
reduced our problem to counting the number of walks of various types. We will follow the definitions
of Bordenave rather closely, so we may recycle his bounds.

We have that

tr
(

(B`(B`)∗)m
)

=
∑

e1,...,e2m−1∈E2m−1
n

2m−1∏
s=1

(B`
n)es,es+1 , (17)

where we have taken s + 1 modulo 2m − 1. To characterize the summation, it is useful for us to
define the following set of sequences of half-edges, which have the property that large sub-sequences
are tangle-free.

Definition A.9. Let W`,m be the set of sequences of half-edges γ of length 2` × 2m with the
properties that, if we write γ as a sequence of sub-sequences γ = (γ(1), . . . , γ(2m))

1. For each s ∈ [2m], the sub-sequence γ(s) is valid, non-backtracking, and tangle-free.

2. For each s ∈ [m], the final edge in γ(s) is equal to the first edge in γ(s+1) (where we take

addition mod 2m). Formally, if γ(t) = (((u
(t)
1 , v

(t)
1 ), i

(t)
1 ), . . . , ((u

(t)
2` , v

(t)
2` ), i

(t)
2` )), then we require

u
(s)
2`−1 = u

(s+1)
1 , v

(s)
2`−1 = v

(s+1)
1 , i

(s)
2`−1 = i

(s+1)
1 and i

(s)
2` = i

(s+1)
2 .

Recall we have defined Π to be the set of all half-edges (not necessarily present in Yn).

Definition A.10. We define an equivalence relation on Πm: γ, γ′ ∈ Πm, with γt = ((ut, vt), it)
and with γ′t = ((u′t, v

′
t), i
′
t) for t ∈ [m]. We’ll say that for γ ∼ γ′ if for all t ∈ [m] we have

(ut, vt) = (u′t, v
′
t), and if in addition there exists a tuple of permutations in Sn, one for each vertex

u ∈ V from the base graph, (σu)u∈V , so that i′t = σut(it).
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We observe that if γ is even, then any γ′ ∼ γ is even as well. Similarly, if γ ∼ γ′, then
|Eγ | = |Eγ′ |. We choose a canonical representative for each equivalence class:

Definition A.11 (Canonical sequence). Let Vγ(u) ⊆ {u}×[n] be the set of all vertices of Yn visited
by γ which include u. We’ll call γ ∈ Πm canonical if for all u ∈ V , Vγ(u) = {(u, 1), . . . , (u, |Vγ(u)|)},
and if the vertices of Vγ(u) appear in lexicographical order in γ.

The following lemmas are given in [Bor17].

Lemma A.12 ([Bor17, Lemma 27]). Let γ ∈ Πm, and let Vγ ⊆ V × [n] be the set of vertices of Yn
which appear in γ. Suppose that |Vγ | = s. Then γ is isomorphic to at most ns elements in Πm.

Lemma A.13 ([Bor17, Lemma 28]). Let W`,m(s, a) be the subset of canonical paths in W`,m with
|Vγ | = s and |Eγ | = a. There exists a constant κ depending on ρ and Y such that we have

|W`,m(s, a)| ≤ ρs(κ`m)8m(a−s+1)+10m.

We are now ready to bound the contribution of the sums of tangle-free sections.

Proposition A.14. For m = b logn
17 log lognc, n ≥ 3, and ` ≤ 1

4 logd−1 n, and 1 < ρ, there is a constant
c independent of n such that

E

 ∑
γ∈W`,m

2m∏
i=1

∏̀
t=1

M
γ
(i)
2t−1,γ

(i)
2t

 ≤ n(c`m)10mρ(`+2)m.

Proof. We split the left-hand side according to the W equivalence classes,

E

 ∑
γ∈W`,m

2m∏
i=1

∏̀
t=1

M
γ
(i)
2t−1,γ

(i)
2t

 ≤ ∞∑
s=1

∞∑
a=s−1

ns
∑

γ∈W`,m(s,a)

E

[
2m∏
i=1

∏̀
t=1

M
γ
(i)
2t−1,γ

(i)
2t

]
, (18)

where we have used that |Vγ | − 1 ≤ |Eγ |, since Gγ is connected. Now applying Proposition A.8
(using that `m�

√
n), we have that for γ ∈ W`,m(s, a),

E

[
2m∏
i=1

∏̀
t=1

M
γ
(i)
2t−1,γ

(i)
2t

]
≤ 1[γ even] · (1 + on(1)) ·

(
1

n

)a
.

Plugging this in above, along with the bound on |W`,m(s, a)| from Lemma A.13, we have

eq. (18) ≤
(`+2)m+1∑

s=1

ns
(`+2)m∑
a=s−1

ρs(κ`m)8m(a−s+1)+10m · (1 + on(1)) ·
(

1

n

)a
,

where we use the fact that γ must be even to obtain that |Eγ | = s ≤ (` + 2)m, (as there are only
2(`+ 2)m edges in the sequence γ, and each must appear twice), and adjusted the upper limits of
the summation accordingly.

We re-index the above summation, setting a′ = a − s + 1 and beginning to sum from a′ = 0
(and summing till a′ =∞, as this yields a valid upper bound),

eq. (18) ≤ (1 + on(1)) · (κ`m)10m ·
(`+2)m+1∑

s=1

nsρs ·
(

1

n

)s−1 ∞∑
a′=0

(κ`m)8ma′ ·
(

1

n

)a′

= (1 + on(1)) · n(κ`m)10m ·
(`+2)m+1∑

s=1

ρs
∞∑
a′=0

(κ`m)8ma′ ·
(

1

n

)a′
. (19)
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For our chosen m, when n is large enough, (κ`m)8m

n ≤ (logn)16m

n ≤ n−1/17. Combining this ob-
servation with the fact that the rightmost sum is a geometric sum, there is a constant c such
that

eq. (19) ≤ cn(κ`m)10m ·
(`+2)m+1∑

s=1

ρs.

Finally, we are left again with a geometric sum; since we have ρ > 1, there is a constant c′ so that

≤ c′n(κ`m)10m · ρ(`+2)m+1.

Using that ρ is independent of n to push ρ into the constant, we have our conclusion.

A.5 Putting things together

We now finally have the ingredients to prove Theorem 4.2.

Proof of Theorem 4.2. Define ρ := ρ(B), fix ε > 0, ` = κ logd−1 n for a constant κ ∈ (0, 1/4),

m = b logn
17 log lognc. By Lemma A.6, if E is the event that Yn is `-tangle-free,

Pr(ρ(Bn) ≥ √ρ+ ε) ≤ Pr(ρ(Bn) ≥ √ρ+ ε, E) + o(1) ≤ Pr(‖B`
n(B`

n)∗‖1/2` ≥ √ρ+ ε, E) + o(1).

If Yn is `-tangle-free, then only sequences γ ∈W`,m contribute to Equation (17), as any (consecutive)
sub-sequence γ(i) ⊂ γ of length 2` defines a length-` walk in Yn. So using Fact A.1 in conjunction
with Equation (17) and Proposition A.14, we have that

E[tr((B`
n(B`

n)∗)m) · 1[E ]] ≤ n(c`m)10mρ(`+2)m.

Taking the 2`mth root on the right, by our choice of ` = Θ(log n) and m = Θ(log n/ log logn),
(c`m)5/` = o(log2 n)1/ logn = 1 + o(1), n1/2`m ≤ 2Θ(log logn/ logn) = 1 + o(1), and since ρ is indepen-
dent of n, ρ1/` = 1 + on(1), and we have the desired conclusion.
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