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Linear Bandits in High Dimension and
Recommendation Systems

Yash Deshpande and Andrea Montanari

Abstract—A large number of online services provide
automated recommendations to help users to navigate
through a large collection of items. New items (products,
videos, songs, advertisements) are suggested on the basis
of the user’s past history and –when available– her de-
mographic profile. Recommendations have to satisfy the
dual goal of helping the user to explore the space of
available items, while allowing the system to probe the
user’s preferences.

We model this trade-off using linearly parametrized
multi-armed bandits and prove upper and lower bounds
that coincide up to constants in the data poor (high-
dimensional) regime. We test (a variation of) the scheme
used for estabilishing achievability on the Netflix dataset,
and obtain results in agreement with the theory.

I. INTRODUCTION

Recommendation systems are a key technology for
navigating through the ever-growing amount of data that
is available on the Internet (products, videos, songs,
scientific papers, and so on). Recommended items are
chosen on the basis of the user’s past history and
have to strike the right balance between two competing
objectives:
Serendipity i.e. allowing accidental pleasant discover-

ies. This has a positive –albeit hard to quantify–
impact on user experience, in that it naturally
limits the recommendations monotony. It also has
a quantifiable positive impact on the systems, by
providing fresh independent information about the
user preferences.

Relevance i.e. determining recommendations which are
most valued by the user, given her past choices.

While this trade-off is well understood by practitioners,
as well as in the data mining literature [1], [2], [3],
rigorous and mathematical work has largely focused on
the second objective [4], [5], [6], [7], [8], [9]. In this
paper we address the first objective, building on recent
work on linearly parametrized bandits [10], [11], [12].
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In a simple model, the system recommends
items i(1), i(2), i(3), . . . sequentially at times
t ∈ {1, 2, 3, . . . }. The item index at time t is selected
from a large set i(t) ∈ [M ] ≡ {1, . . . ,M}. Upon
viewing (or reading, buying, etc.) item i(t), the user
provides feedback yt to the system. The feedback can be
explicit, e.g. a one-to-five-stars rating, or implicit, e.g.
the fraction of a video’s duration effectively watched by
the user. We will assume that yt ∈ R, although more
general types of feedback also play an important role in
practice, and mapping them to real values is sometimes
non-trivial.

A large body of literature has developed statistical
methods to estimate the feedback a user will provide
on a specific item, given past data concerning the same
and other users (see the references above). A particularly
successful approach consists in ‘low rank’ or ‘latent
space’ models. These models postulate that the rating
yi,u provided by user u on item i is approximately given
by the scalar product of two feature vectors θu and
xi ∈ Rp characterizing, respectively, the user and the
item. In formulae

yi,u = 〈xi, θu〉+ zi,u ,

where 〈a, b〉 ≡
∑p

i=1 aibi denotes the standard scalar
product, and zi,u captures unexplained factors.

The items feature vectors xi can be either constructed
explicitly, or derived from users’ feedback using matrix
factorization methods. Throughout this paper we will
assume that they have been computed in advance using
either one of these methds and are hence given. We will
use the shorthand xt = xi(t) for the feature vector of the
item recommended at time t.

Since the items’ feature vectors are known in advance,
distinct users can be treated independently, and we will
hereafter focus on a single users, with feature vector
θ. The vector θ can encode demographic information
known in advance or be computed from the user’s
feedback. While the model can easily incorporate the
former, we will focus on the most interesting case in
which no information is known in advance.
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We are therefore led to consider the linear bandit
model

yt = 〈xt, θ〉+ zt , (1)

where, for simplicity, we will assume zt ∼ N(0, σ2)
independent of θ, {xi}t

i=1 and {zi}t−1
i=1 . At each time t,

the recommender is given to choose a item feature vector
xt ∈ Xp ⊆ Rp, with Xp the set of feature vectors of the
available items. A recommendation policy is a sequence
of random variables {xt}t≥1, xt ∈ Xp whereby xt+1 is
a function of the past history {y`, x`}1≤`≤t (technically,
xt+1 has to be measurable on Ft ≡ σ({y`, x`}1≤`≤t)).
The system is rewarded at time t by an amount equal
to the user appreciation yt, and we let rt denote the
expected reward, i.e. rt ≡ E{〈xt, θ〉}.

As mentioned above, the same linear bandit problem
was already studied in several papers, most notably
by Rusmevichientong and Tsitsiklis [11]. However, the
theory developed in that work has two limitations that
are important in the present context. First, the main
objective of [11] is to construct policies with nearly
optimal ‘regret’, and the focus is on the asymptotic
behavior for t large with p constant. In this limit the
regret per unit time goes to 0. In a recommendation
system, typical dimensions of the latent feature vector
are p = 20 ∼ 50 (significantly larger dimensions are
obtained if xi includes explicitly constructed features).
As a consequence, existing theory requires t & 100
ratings, which is unrealistic for many recommendation
systems and a large number of users.

Second, the policies that have been analyzed in [11]
are based on an alternation of pure exploration and pure
exploitation. In exploration phases, recommendations are
completely independent of the user profile. This is of
course unrealistic (and potentially harmful) in practice
because it might correspond to a very negative user
experience.

We aim at developing a policy with the following
properties:

1) Constant-optimal cumulative reward: For all time
t,

∑t
`=1 r` is within a constant factor of the maxi-

mum achievable reward.
2) Constant-optimal regret: Let the maximum achiev-

able reward be ropt ≡ supx∈Xp
〈x, θ〉, then the

‘regret’
∑t

`=1(r
opt − r`) is within a constant of

the optimal.
3) Approximate monotonicity: For any 0 ≤ t ≤ s, we

have P{〈xs, θ〉 ≥ c1rt} ≥ c2 for c1, c2 as close as
possible to 1.

We will describe a simple policy that achieves the first
two objectives under the assumption that Xp = {x ∈
Rp : ‖x‖2 ≤ 1}, and that the ‘signal to noise
ratio’ of each observation yt is of order one. While we
will not state any formal result on point 3, the policy
has interesting monotonicity properties and is a good
candidate in that respect as well.

In Section II we formally state our main results. In
Section III we discuss further related work. In Section
IV we provide numerical simulations of our policy on
synthetic as well as realistic data and also provide a
comparison with prior work. Proofs are omitted for the
conference version of this paper.

II. MAIN RESULTS

We will consider a specific form for the set of possible
arms, namely Xp = Ball(1) ≡ {x|x ∈ Rp, ‖x‖2 ≤ 1} is
the unit `2 ball in p dimensions. This is of course a very
crude model for the set of feature vectors corresponding
to movies in a given database, since the latter is a cloud
of M points in Rp. However, numerical simulations
presented in section IV suggest that, already for M as
small as 20, 000, this cloud can be ‘dense enough’ to
make the unit ball model qualitatively correct.

Following [11] we will also assume θ ∈ Rp to
be drawn from a Gaussian prior N(0, Ip×p/p). This
roughly corresponds to the assumption that nothing is
known a priori about the user except the length of its
feature vector ‖θ‖ ≈ 1. Under this assumption, the
scalar product 〈x1, θ〉, is also Gaussian with mean 0 and
variance 1/p and hence ∆ = pσ2 is noise-to-signal ratio
for the problem. Our results are completely explicit and
apply to any value of ∆. However they are constant-
optimal for ∆ of order one.

We will refer to our strategy as SMOOTHEXPLORE .
Let θ̂t be the the maximum likelihood estimate of θ at
time t, namely

θ̂t ≡ arg min
θ∈Rp

{ 1
2σ2

t−1∑
`=1

(
y` − 〈x`, θ〉

)
+

1
2p
‖θ‖2

}
. (2)

We also denote by P⊥t ≡ Ip×p−θ̂tθ̂
T
t /‖θ̂t‖2 the projector

orthogonal to θ̂t. Finally let ut ∈ Rp a uniformly random
unit vector independent of θ and Ft. We then let

xt =
√

1− β2
t

θ̂t

‖θ̂t‖
+ βtP

⊥
t ut , (3)

βt =

√
2
3

min
(

p∆
t

, 1
)1/4

. (4)

For t = 1, θ̂t = 0 and we interpret θ̂t/‖θ̂t‖ as
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an arbitrary unit norm vector. In words, we combine
greedy exploitation as indicated by the current max-
imum likelihood estimate, and random exploration in
the orthogonal direction. As is natural to expect, the
amount of exploration βt is monotone decreasing, with
limt→∞ βt = 0, and depends smoothly on t. Hereafter
we will adopt the notation β̄2

t = 1− β2
t .

Out main result characterizes the cumulative reward

Rt ≡
t∑

`=1

rt =
t∑

`=1

E{〈x`, θ〉}

Under the current model the oracle reward is ropt ≡
E{‖θ‖} ≤ 1 (and indeed ropt = 1 − exp(−Θ(p)) for
large p).

Theorem 1. Consider the linear bandits problem with
θ ∼ N(0, Ip×p/p), xt ∈ Xp ≡ Ball(1) and pσ2 = ∆.
Then there exist constants Ca = Ca(∆) bounded for ∆
bounded away from 0 and ∞, such that SMOOTHEX-
PLORE achieves reward

for 1 < t ≤ p∆, Rt ≥ C1 t3/2p−1/2 − C2 t1/2p−1/2, ,

for t > p∆, Rt ≥ ropt t− C3 (pt)1/2+ω(p) .

where ω(p) = 1/(2(p + 2)).
Further, the cumulative reward of any strategy is

bounded as follows

for 1 < t ≤ p∆, Rt ≤ C5 t3/2p−1/2 .

For t > p∆, we can obtain a matching upper bound
by a simple modification of the arguments in [11].

Theorem 2 (Rusmevichientong and Tsitsiklis). Under
the described model, the cumulative reward of any policy
is bounded as follows

for t > p∆, Rt ≤ ropt t−
√

pt∆ +
p∆
2

.

The above results characterize a sharp dichotomy
between a low-dimensional, data rich regime for t > p∆
and a high-dimensional, data poor regime for t ≤ p∆.
In the first case classical theory applies: the reward
approaches the oracle performance with a gap of order√

pt. This behavior is in turn closely related to central
limit theorem scaling in asymptotic statistics. Notice that
the scaling with t of the risk of SMOOTHEXPLORE
for large t is suboptimal, namely (pt)1/2+ω(p). Since
however ω(p) = Θ(1/p) the difference can be seen
only on exponential time scales t ≥ exp{Θ(p)} and is
likely to be irrelevant in the context considered here (see
Section IV for a demonstration).

In the high-dimensional, data poor regime t ≤ p∆ the

number of observations is smaller than the model param-
eters and the vector θ can only be partially estimated.
Nevertheless, such partial estimate can be exploited to
produce a cumulative reward scaling as t3/2p1/2. In this
regime performances are not limited by central limit
theorem fluctuations in the estimate of θ. The limiting
factor is instead the dimension of the parameter space
that can be effectively explored in time t.

In order to understand this behavior, it is convenient
to consider the noiseless case σ = 0. This is a somewhat
degenerate case that is not covered by the above theorem
and, nevertheless, yields useful intuition. In the noiseless
case, acquiring t observations y1, . . . yt is equivalent to
learning the projection of θ on a t-dimensional subspace
spanned by x1, . . . , xt. Equivalently, we learn t coordi-
nates of θ in a suitable basis. Since the mean square
value of each component of θ is 1/p, this yields an
estimate of θ (the restriction to these coordinates) with
E‖θ̂t‖22 = t/p. By selecting xt in the direction of θ̂t

we achieve instantaneous reward rt ≈
√

t/p and hence
cumulative reward Rt = Θ(t3/2p−1/2) as stated in the
theorem.

Due to space limitations, the proof of Theorem 1 is
deferred to the journal version of this paper.

III. RELATED WORK

Auer in [13] first considered a model similar to ours,
wherein the parameter θ and noise zt are bounded almost
surely. The work assumes Xp finite and introduces an
algorithm based on upper confidence bounds. Dani et al.
[10] extended the policy of [13] for arbitrary compact
decision sets Xp. For finite sets, [10] prove an upper
bound on the regret that is logarithmic in its cardinality
|Xp|, while for continuous sets the authors proved an
upper bound of O(

√
pt log3/2 t). This result was further

improved by logarithmic factors in [12]. The common
theme throughout this line of work is the use of upper
confidence bounds and least-squares estimation. The
algorithms typically construct ellipsoidal confidence sets
around the least-squares estimate θ̂ which, with high
probability, contain the parameter θ. The algorithm then
chooses optimistically the arm that appears the best with
respect to this ellipsoid. As the confidence ellipsoids are
initialized to be large, the bounds are only useful for
t � p. In particular, in the high-dimensional data-poor
regime t = O(p), the bounds typically become trivial.

In light of Theorem 2 this is not surprising. Even after
normalizing the noise-to-signal ratio while scaling the
dimension, the O(

√
pt) dependence of the risk is relevant

only for large time scales of t ≥ p∆. This is the regime
in which the parameter θ has been estimated fairly well.
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Fig. 1. Top frame: Cumulative reward Rt in the data poor regime
t . p∆ as obtained through numerical simulations over synthetic data,
together with analytical upper bound. Bottom frame: Cumulative risk
in the data rich regime t� p∆.

Rusmevichientong and Tsitsiklis [11] propose a
phased policy which operates in distinct phases of learn-
ing the parameter θ and earning based on the current
estimate of θ. Although this approach yields order op-
timal bounds for the regret, it suffers from the same
shortcomings as confidence-ellipsoid based algorithms.
In fact, [11] also consider a more general policy based on
confidence bounds and prove a O(

√
pt log3/2 t) bound

on the regret.
Our approach to the problem is significantly different

and does not rely on confidence bounds. It would be
interesting to understand whether the techniques devel-
oped here can be use to improve the confidence bounds
method.

IV. NUMERICAL RESULTS

We will mainly compare our results with those of
[11] since the results of that paper directly apply to

the present problem. The authors proposed a phased
exploration/exploitation policy, wherein they separate
the phases of learning the parameter θ (exloration)
and earning reward based on the current estimate of θ
(exploitation).

In Figure 1 we plot the cumulative reward and the
cumulative risk incurred by our policy and the phased
policy, as well as analytical bounds thereof. We gen-
erated θ ∼ N(0, Ip×p) randomly for p = 30, and
produced observations yt, t ∈ {1, 2, 3, . . . } according
to the general model (1) with ∆ = pσ2 = 1. The curves
presented here are averages over n = 5000 realizations
and statistical fluctuations are negligible.

The top frame illustrates the performance of
SMOOTHEXPLORE in the data poor (high-dimensional)
regime t . p∆. We compare the cumulative reward
Rt as achieved in simulations, with that of the phased
policy of [11] and with the theoretical upper bound
of Theorem 1 (and Theorem 2 for t > p∆). In the
bottom frame we consider instead the data rich (low-
dimensional) regime t � p∆. In this case it is more
convenient to plot the cumulative risk tropt−Rt. We plot
the curves corresponding to the ones in the top frame,
as well as the upper bound (lower bound on the reward)
from Theorem 1.

Note that the O(
√

pt) behavior of the risk of the
phased policy can be observed only for t & 1000. On
the other hand, our policy displays the correct behavior
for both time scales. The extra ω(p) = Θ(1/p) factor
in the exponent yields a factor larger than 2 only for
t ≥ 22(p+2) ≈ 2 · 1019.
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Fig. 2. Results using the Netflix datase. The policy SMOOTHEXPLORE
is effective in learning the user’s preferences and is well described by
the predicted behavior.

It is interesting to see that the policy adapts to real
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datasets as well. We plot results obtained with the Netflix
Prize dataset in Figure 2. Here the feature vectors xi’s
for movies are obtained using the matrix completion
algorithm of [8]. The user parameter vectors θu were
obtained by regressing the rating against the movie fea-
ture vectors (the average user rating au was subtracted).
As for synthetic data, we took p = 30. Regression
also yields an estimate for the noise variance which is
assumed known in the algorithm. We then simulated an
interactive scenario by postulating that the rating of user
u for movie i is given by

ỹi,u = Quant(au + 〈x,θu〉) ,

where Quant(z) quantizes z to to {1, 2, · · · , 5} (corre-
sponding to a one-to-five star rating). The feedback used
for our simulation is the centered rating yi,u = ỹi,u−au.

Notice that using the actual ratings in the dataset as
yi,u is inconsistent. Indeed, first of all these ratings form
(for each user) a very small subset (of the order of 100
movies) of the whole database. Second, this is a biased
subset (since it is selected by the user itself).

In order to adapt to the fact that the decision set Xp

is finite (comprising M = 17, 770 movies) we modified
the policy SMOOTHEXPLORE as follows. At each time
we compute the maximum likelihood estimate of the
user feature vector θ̂t and choose the “best” movie
x̃t = arg maxx∈Xp〈x, θ̂t〉 assuming our estimate is error
free. We then construct the ball in Rp with center β̄tx̃t

and radius βt. We list all the movies whose feature
vectors fall in this ball, and recomend a randomly chosen
one in this list. Notice that, if the decision region was
indeed the unit ball, this strategy would be essentially
the same (for large p) as the one we analyzed.

Classically bandit theory implies the reward behavior
is described to be of type c1t−c2

√
t where c1 and c2 are

(dimension-dependent) constants. Figure 2 presents the
best fit of this type for t ≤ 2p. The description apears
to be qualitatively incorrect in this regime. Indeed, in
this regime, the reward behavior is better explained by
a c3t

3/2 curve. These results suggest that our policy
is fairly robust to the significant modeling uncertainty
inherent in the problem. Remarkably, despite the fact
that the decision set Xp is finite, the theory developed
for Xp equal to the unit ball seems to apply qualitatively.

V. CONCLUSION

The (essentially) order-optimal results of Theorem 1
can be extended in a straightforward manner to include
more general decision sets Xp such as ellipsoids. Further
directions of work include establishing similar guaran-
tees under weaker conditions on the noise and user

model. More importantly, our focus on the dichotomy
between the data-poor and data-rich regimes highlights
it as an important yet hitherto neglected feature of the
bandit model. We believe our results establish that the
linear bandits are a good framework for understanding
interactivity in recommendation systems. It would be
interesting to see if the model and insight could be
extended to include features like adaptivity (where user
preferences may change with time) and influence (where
the recommendations may alter the user characteristics).
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