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Abstract

Consider an Erdös-Renyi random graph in which each edge is present independently
with probability 1/2, except for a subset CN of the vertices that form a clique (a
completely connected subgraph). We consider the problem of identifying the clique,
given a realization of such a random graph.

The best known algorithm provably finds the clique in linear time with high prob-
ability, provided |CN | ≥ 1.261

√
N [YDP11]. Spectral methods can be shown to fail on

cliques smaller than
√
N . In this paper we describe a nearly linear time algorithm that

succeeds with high probability for |CN | ≥ (1 + ε)
√
N/e for any ε > 0. This is the first

algorithm that provably improves over spectral methods.
We further generalize the hidden clique problem to other background graphs (the

standard case corresponding to the complete graph on N vertices). For large girth
regular graphs of degree (∆ + 1) we prove that ‘local’ algorithms succeed if |CN | ≥
(1 + ε)N/

√
e∆ and fail if |CN | ≤ (1− ε)N/

√
e∆.

1 Introduction

Numerous modern data sets have network structure, i.e. the dataset consists of observations
on pairwise relationships among a set of N objects. A recurring computational problem
in this context is the one of identifying a small subset of ‘atypical’ observations against
a noisy background. This paper develops a new type of algorithm and analysis for this
problem. In particular we improve over the best methods for finding a hidden clique in an
otherwise random graph.

Let GN = ([N ], EN ) be a graph over the vertex set [N ] ≡ {1, 2, . . . , N} and Q0, Q1

be two distinct probability distributions over the real line R. Finally, let CN ⊆ [N ] be
a subset of vertices uniformly random given its size |CN |. For each edge (i, j) ∈ EN we
draw an independent random variable Wij with distribution Wij ∼ Q1 if both i ∈ CN and
j ∈ CN and Wij ∼ Q0 otherwise. The hidden set problem is to identify the set CN given
knowledge of the graph GN and the observations W = (Wij)(ij)∈EN

. We will refer to GN

as to the background graph. We emphasize that GN is non-random and that it carries no
information about the hidden set CN .

In the rest of this introduction we will assume, for simplicity, Q1 = δ+1 and Q0 =
(1/2)δ+1 + (1/2)δ−1. In other words, edges (i, j) ∈ EN with endpoints {i, j} ⊆ CN

are labeled with Wij = +1. Other edges (i, j) ∈ EN have a uniformly random label
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Wij ∈ {+1,−1}. Our general treatment in the next sections covers arbitrary subgaussian
distributions Q0 and Q1 and does not require these distributions to be known in advance.

The special case GN = KN (with KN the complete graph) has attracted considerable
attention over the last twenty years [Jer92] and is known as as the hidden or planted clique
problem. In this case, the background graph does not play any role, and the random
variables W = (Wij)i,j∈[N ] can be organized in an N × N symmetric matrix (letting, by
convention, Wii = 0). The matrix W can be interpreted as the adjacency matrix of a
random graph RN generated as follows. Any pair of vertices {i, j} ⊆ CN is connected by
an edge. Any other pair {i, j} 6⊆ CN is instead connected independently with probability
1/2. (We use here {+1,−1} instead of {1, 0} for the entries of the adjacency matrix. This
encoding is unconventional but turns out to be mathematically convenient.) Due to the
symmetry of the model, the set CN ⊆ [N ] does not need to be random and can be chosen
arbitrarily in this case.

It is easy to see that, allowing for exhaustive search, the hidden clique can be found
with high probability as soon as |CN | ≥ 2(1 + ε) log2N for any ε > 0. This procedure has
complexity exp[Θ((logN)2)]. Viceversa, if |CN | ≤ 2(1 − ε) log2N , then the clique cannot
be uniquely identified.

Despite a large body of research, the best polynomial-time algorithms to date require
|CN | ≥ c

√
N to succeed with high probability. This was first achieved by Alon, Krivelevich

and Sudakov [AKS98] through a spectral technique. It is useful to briefly discuss this class
of methods and their limitations. Letting uCN

∈ RN be the indicator vector on CN (i.e.
the vector with entries (uCN

)i = 1 for i ∈ CN and = 0 otherwise), we have

W = uCN
uT

CN
+ Z − ZCN ,CN

. (1.1)

Here Z ∈ RN×N is a symmetric matrix with i.i.d. entries (Zij)i<j uniformly random in
{+1,−1} and ZCN ,CN

is the matrix obtained by zeroing all the entries Zij with {i, j} 6⊆ CN .
Denoting by ‖A‖2 the `2 operator norm of matrix A, we have ‖uCN

uT
CN
‖2 = ‖uCN

‖2
2 = |CN |.

On the other hand, a classical result by Füredi and Komlös [FK81] implies that, with high
probability, ‖Z‖2 ≤ c0

√
N and ‖ZCN ,CN

‖2 ≤ c0
√
|CN |. Hence, if |CN | ≥ c

√
N with c large

enough, the first term in the decomposition (1.1) dominates the others. By a standard
matrix perturbation argument [DK70], letting v1 denote the principal eigenvector of W ,
we have ‖v1 − uCN

/
√
|CN |‖2 ≤ ε provided the constant c = c(ε) is chosen large enough.

It follows that selecting the |CN | largest entries of v1 yields an estimate ĈN ⊂ [N ] that
includes at least half of the vertices of CN : the other half can be subsequently identified
through a simple procedure [AKS98].

The spectral approach does not exploit the fact that |CN | is much smaller than N or
–in other words– the fact that uCN

is a sparse vector. Recent results in random matrix
theory suggest that it is unlikely that the same approach can be pushed to work for |CN | ≤
(1− ε)

√
N (for any ε > 0). For instance the following is a consequence of [KY11, Theorem

2.7]. (The proof is provided in Appendix B.1)

Proposition 1.1. Let eCN
= uCN

/N1/4 be the normalized indicator vector on the vertex
set CN , and Z a Wigner random matrix with subgaussian entries such that E{Zij} = 0,
E{Z2

ij} = 1/N Denote by v1, v2, v3, . . . , v` the eigenvectors of W = uCN
uT

CN
+ Z, corre-

sponding to the ` largest eigenvalues.
Assume |CN | ≥ (1 + ε)

√
N for some ε > 0. Then, with high probability, 〈v1, eCN

〉 ≥
min(

√
ε, ε)/2. Viceversa, assume |CN | ≤ (1 − ε)

√
N . Then, with high probability for any

fixed constant δ > 0, |〈vi, eCN
〉| ≤ cN−1/2+δ for all i ∈ {1, . . . , `} and some c = c(ε, `).
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In other words, for |CN | below
√
N and any fixed `, the first ` principal eigenvectors of

W are essentially no more correlated with the set CN than a random unit vector. A natural
reaction to this limitation is to try to exploit the sparsity of uCN

. Ames and Vavasis [AV11]
studied a convex optimization formulation wherein W is approximated by a sparse low-
rank matrix. These two objectives (sparsity and rank) are convexified through the usual
`1-norm and nuclear-norm relaxations. These authors prove that this convex relaxation
approach is successful with high probability, provided |CN | ≥ c

√
N for an unspecified

constant c. A similar result follows from the robust PCA analysis of Candés, Li, Ma, and
Wright [CLMW11].

Dekel, Gurel-Gurevich and Peres [YDP11] developed simple iterative schemes with
O(N2) complexity (see also [FR10] for similar approaches). For the best of their algorithms,
these authors prove that it succeeds with high probability provided |CN | ≥ 1.261

√
N .

Finally, [AKS98] also provide a simple procedure that, given an algorithm that is successful
for |CN | ≥ c

√
N produces an algorithm that is successful for |CN | ≥ c

√
N/2, albeit with

complexity
√
N times larger.

Our first result proves that the hidden clique can be identified in nearly linear time well
below the spectral threshold

√
N , see Proposition 1.1.

Theorem 1. Assume |CN | ≥ (1 + ε)
√
N/e, for some ε > 0 independent of N . Then

there exists a O(N2 logN) time algorithm that identifies the hidden clique CN with high
probability.

In Section 2 we will state and prove a generalization of this theorem for arbitrary –not
necessarily known– distributions Q0, Q1.

Our algorithm is based on a quite different philosophy with respect to previous ap-
proaches to the same problem. We aim at estimating optimally the set CN by computing
the posterior probability that i ∈ CN , given edge data W . This is, in general, #P-hard
and possibly infeasible if Q0, Q1 are unknown. We therefore consider an algorithm derived
from belief propagation, a heuristic machine learning method for approximating posterior
probabilities in graphical models. We develop a rigorous analysis of this algorithm that
is asymptotically exact as N → ∞, and prove that indeed the algorithm converges to the
correct set of vertices CN for |CN | ≥ (1 + ε)

√
N/e. Viceversa, the algorithm converges to

an uninformative fixed point for |CN | ≤ (1− ε)
√
N/e.

Given Theorem 1, it is natural to ask whether the threshold
√
N/e has a fundamental

computational meaning or is instead only relevant for our specific algorithm. Recently,
[FGR+12] proved complexity lower bounds for the hidden clique model, in a somewhat
different framework. In the formulation of [FGR+12], one can query columns of W and a
new realization from the distribution ofW given CN is instantiated at each query. Assuming
that each column is queried O(1) times, their lower bound would require |CN | ≥ N1/2−ε.
While this analysis can possibly be adapted to our setting, it is unlikely to yield a lower
bound of the form |CN | ≥ c

√
N with a sharp constant c.

Instead, we take a different point of view, and consider the hidden set problem on a
general background graph GN . Let us emphasize once more thatGN is non random and that
all the information about the hidden set is carried by the edge labels W = (Wlk)(l,k)∈EN

.
In addition, we attach to the edges a collection of independent labels U = (Ulk)(l,k)∈EN

i.i.d. and uniform in [0, 1]. The U labels exist to provide for (possible) randomization in
the algorithm. Given such a graph GN with labels W , U , a vertex i ∈ [N ] and t ≥ 0, we
let BallGN

(i; t) denote the subgraph of GN induced by those vertices j ∈ [N ] whose graph
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distance from i is at most t. We regard BallGN
(i; t) as a graph rooted at i, with edge labels

Wjl, Ujl inherited from GN .

Definition 1.2. An algorithm for the hidden set problem is said to be t-local if, denoting
by ĈN its output, the membership (i ∈ ĈN ) is a function of the neighborhood BallGN

(i; t).
We say that it is local if it is t-local for some t independent of N .

The concept of (randomized) local algorithms was introduced in [Ang80] and formalizes
the notion of an algorithm that can be run in O(1) time in a distributed network. We refer
to [Lin92, NS95] for earlier contributions, and to [Suo13] for a recent survey.

We say that a sequence of graphs {GN}N≥1 is locally tree-like if, for any t ≥ 0, the
fraction of vertices i ∈ [N ] such that BallGN

(i; t) is a tree converges to one as N →∞. As
a standard example, random regular graphs are locally tree-like. The next result is proved
in Section 4.

Theorem 2. Let {GN}N≥1 be a sequence of locally tree-like graphs, with regular degree
(∆ + 1), and let CN ⊆ [N ] be a uniformly random subset of the vertices of given size |CN |.
If |CN | ≤ (1 − ε)N/

√
e∆ for some ε > 0, there exists ξ > 0 independent of ∆ and ε such

that any local algorithm outputs a set of vertices ĈN with E[|CN4ĈN |] ≥ Nξ/
√

∆ for all
N large enough.

Viceversa, if |CN | ≥ (1 + ε)N/
√
e∆ for some ε > 0, there exists ξ(ε) > 0 and a local

algorithm that outputs a set of vertices ĈN satisfying E[|CN4ĈN |] ≤ N exp(−ξ(ε)
√

∆) for
all N large enough.

Notice that, on a bounded degree graph, the hidden set CN can not be identified exactly
with high probability. Indeed we would not be able to assign a single vertex i with high
probability of success, even if we knew exactly the status of all of its neighbors. On the
other hand, purely random guessing yields E[|CN4ĈN |] = NΘ(1/

√
∆). The last theorem,

thus, establishes a threshold behavior: local algorithms can reconstruct the hidden set with
small error if and only if |CN | is larger than N/

√
e∆.

Unfortunately Theorem 2 only covers the case of sparse or locally tree-like graphs. We
let N → ∞ at ∆ fixed and then take ∆ arbitrarily large. However, if we naively apply it
to the case of complete background graphs GN = KN , by setting ∆ = N − 2, we get a
threshold at |CN | ≈

√
N/e which coincides with the one in Theorem 1. This suggests that√

N/e might be a fundamental limit for solving the hidden clique problem in nearly linear
time. It would be of much interest to clarify whether this is indeed the case.

The contributions of this paper can be summarized as follows:

1. We develop a new algorithm based on the belief propagation heuristic in machine
learning, that applies to the general hidden set problem.

2. We establish a sharp analysis of the algorithm evolution, rigorously establishing that
it can be used to find hidden cliques of size

√
N/e in random graphs. The analysis

applies to more general noise models as well.

3. We generalize the hidden set problem to arbitrary graphs. For locally tree-like graphs
of degree (∆ + 1), we prove that local algorithms succeed in finding the hidden set
(up to small errors) if and only if its size is larger than N/

√
e∆.

The complete graph case is treated in Section 2, with technical proofs deferred to Section
3. The locally tree-like case is instead discussed in Section 4 with proofs in Section 5.
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1.1 Further related work

A rich line of research in statistics addresses the problem of identifying the non-zero entries
in a sparse vector (or matrix) x from observations W = x+ Z where Z has typically i.i.d.
standard Gaussian entries. In particular [ACDH05, ABBDL10, ACCD11, BDN12] study
cases in which the sparsity pattern of x is ‘structured’. For instance, we can take x ∈ RN×N

a matrix with xij = µ if {i, j} ⊆ CN and xij = 0 otherwise. This fits the framework studied
in this paper, for GN the complete graph and Q0 = N(0, 1), Q1 = N(µ, 1). This literature
however disregards computational considerations. Greedy search methods were developed
in several papers, see e.g. [SN08, SWPN09].

Also, the decomposition (1.1) indicates a connection with sparse principal component
analysis [ZHT06, JL09, dEGJL07, dBG08]. This is the problem of finding a sparse low-rank
approximation of a given data matrix W . Remarkably, even for sparse PCA, there is a large
gap between what is statistically feasible and what is achievable by practical algorithms.
Berthet and Rigollet [BR13] recently investigated the implications of the assumption that
hidden clique is hard to solve for |CN = o(

√
N) on sparse PCA.

The algorithm we introduce for the case GN = KN is analogous to the ‘linearized BP’
algorithm of [MT06, GW06], and to the approximate message passing (AMP) algorithm
of [DMM09, BM11, BLM12]. These ideas have been applied to low-rank approximation
in [RF12]. The present setting poses however several technical challenges with respect to
earlier work in this area: (i) The entries of the data matrix are not i.i.d.; (ii) They are
non-Gaussian with –in general– non-zero mean; (iii) We seek exact recovery instead of
estimation; (iv) The sparsity set CN to be reconstructed scales sublinearly with N .

Finally, let us mention that a substantial literature studies the behavior of message
passing algorithms on sparse random graphs [RU08, MM09]. In this paper, a large part
of our technical effort is instead devoted to a similar analysis on the complete graph, in
which simple local convergence arguments fail.

1.2 Notations

Throughout the paper, [M ] = {1, 2, . . . ,M} denotes the set of first M integers. We employ
a slight abuse of notation to write [N ]\i, j for [N ]\{i, j}. The indicator function is denoted
by I( · ).

We write X ∼ P when a random variable X has a distribution P . We will sometimes
write EP to denote expectation with respect to the probability distribution P . Probability
and expectation will otherwise be denoted by P and E. For a ∈ R, b ∈ R+, N(a, b) denotes
the Gaussian distribution with mean a and variance b. The cumulative distribution function
of a standard Gaussian will be denoted by Φ(x) ≡

∫ x
−∞ e−z2/2dz/

√
2π.

Unless otherwise specified, we assume all edges in the graphs mentioned are undirected.
We denote by ∂i the neighborhood of vertex i in a graph.

We will often use the phrase “for i ∈ CN” when stating certain results. More precisely,
this means that for each N we are choosing an index iN ∈ CN , which does not depend on
the edge labels W .

We use c, c0, c1, . . . and C1, C2, . . . to denote constants independent of N and |CN |.
Throughout, for any random variable Z we will indicate by PZ its law.
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2 The complete graph case: Algorithm and analysis

In this section we consider the case in which the background graph is complete, i.e. GN =
KN . Since GN does not play any role in this case, we shall omit all reference to it. We will
discuss the reconstruction algorithm and its analysis, and finally state a generalization of
Theorem 1 to the case of general distributions Q0, Q1.

2.1 Definitions

In the present case the data consists of a symmetric matrix W ∈ RN×N , with (Wij)i<j

generated independently as follows. For an unknown set CN ⊂ [N ] we have Wij ∼ Q1 if
{i, j} ⊆ CN , and Wij ∼ Q0 otherwise. Here Q1 and Q0 are distinct probability measures.
We make the following assumptions:

I. Q0 has zero mean and Q1 has non-zero mean λ. Without loss of generality we shall
further assume that Q0 has unit variance, and that λ > 0.

II. Q0 and Q1 are subgaussian with common scale factor ρ.

It will be clear from the algorithm description that there is indeed no loss in generality
in assuming that Q0 has unit variance and that λ is positive. Recall that a probability
distribution P is subgaussian with scale factor ρ > 0 if for all y ∈ R we have:

EP

(
ey(X−EP X)

)
≤ eρy2/2.

There is no loss of generality in assuming a common scale factor for Q0 and Q1.
The task is to identify the set CN from a realization of the matrix W . As discussed

in the introduction, the relevant scaling is |CN | = Θ(
√
N) and we shall therefore define

κN ≡ |CN |/
√
N . Further, throughout this section, we will make use of the normalized

matrix

A ≡ 1√
N
W . (2.1)

In several technical steps of our analysis we shall consider a sequence of instances
{(WN×N ,CN )}N≥1 indexed by the dimension N , such that limN→∞ κN = κ ∈ (0,∞).
This technical assumption will be removed in the proof of our main theorem.

2.2 Message passing and state evolution

The key innovation of our approach is the construction and analysis of a message passing
algorithm that allows us to identify the hidden set CN . As we demonstrate in Section 4,
this algorithm can be derived from belief propagation in machine learning. However this
derivation is not necessary and the treatment here will be self-contained.

The message passing algorithm is iterative and at each step t ∈ {1, 2, 3, . . . } produces
an N ×N matrix θt whose entry (i, j) will be denoted as θt

i→j to emphasize the fact that
θt is not symmetric. By convention, we set θt

i→i = 0. The variables θt
i→j will be referred

to as messages, and their update rule is formally defined below.

6



Definition 2.1. Let θ0 ∈ RN×N be an initial condition for the messages and, for each t,
let f( · ; t) : R → R be a scalar function. The message passing orbit corresponding to the
triple (A, f, θ0) is the sequence of {θt}t≥0, θt ∈ RN×N defined by letting, for each t ≥ 0:

θt+1
i→j =

∑
`∈[N ]\i,j

A`if(θt
`→i, t) , ∀ j 6= i ∈ [N ] . (2.2)

We also define a sequence of vectors {θt}t≥1 with θt = (θt
i)i∈[N ] ∈ RN , by letting (the

entries of θt being indexed by i ∈ [N ]) given by:

θt+1
i =

∑
`∈[N ]\i

A`if(θt
`→i, t). (2.3)

The functions f( · , t) will be chosen so that they can be evaluated in O(1) operations.
Each iteration can be implemented with O(N2) operations. Indeed (θt+1

i )i∈[N ] can be
computed in O(N2) as per Eq. (2.3). Subsequently we can compute (θt+1

i→j)i,j∈[N ] in O(N2)
operations by noting that θt+1

i→j = θt+1
i −Aijf(θt

j→i, t).
The proper choice of the functions f( · , t) plays a crucial role in the achieving the

claimed tradeoff between |CN | and N . This choice will be optimized on the basis of the
general analysis developed below.

Before proceeding, it is useful to discuss briefly the intuition behind the update rule
introduced in Definition 2.1. For each vertex i, the message θt

i→j and the value θt
i are

estimates of the likelihood that i ∈ CN : they are larger for vertices that are more likely
to belong to the set CN . In order to develop some intuition on Definition 2.1, consider
a conceptually simpler iteration operating as follows on variables ϑt = (ϑt

i)i∈[N ]. For
each i ∈ [N ] we let ϑt+1

i =
∑

j∈[N ]Aijf(ϑt
i; t). In the special case f(ϑ; t) = ϑ we obtain

the iteration ϑt+1 = Aϑt which is simply the power method for computing the principal
eigenvector of A. As discussed in the introduction, this does not use in any way the
information that |CN | is much smaller than N . We can exploit this information by taking
f(ϑ; t) a rapidly increasing function of ϑ that effectively selects the vertices i ∈ [N ] with
ϑt

i large. We will see that this is indeed what happens within our analysis.
An important feature of the message passing version (operating on messages θt

i→j) is
that it admits a characterization that is asymptotically exact as N → ∞. In the large N
limit, the messages θt

i (for fixed t) converge in distribution to Gaussian random variables
with certain mean and variance. In order to state this result formally, we introduce the
sequence of mean and variance parameters {(µt, τ

2
t )}t≥0 by letting µ0 = 1, τ2

0 = 0 and
defining , for t ≥ 0,

µt+1 = λκE[f(µt + τt Z, t)] (2.4)

τ2
t+1 = E[f(τtZ, t)2], (2.5)

Here expectation is with respect to Z ∼ N(0, 1). We will refer to this recursion as to state
evolution.

Lemma 2.2. Let f(u, t) be, for each t ∈ N a finite-degree polynomial. For each N , let
W ∈ RN×N be a symmetric matrix distributed as per the model introduced above with
κN ≡ |CN |/

√
N → κ ∈ (0,∞). Set θ0

i→j = 1 and denote the associated message passing
orbit by {θt}t≥0.
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Then, for any bounded Lipschitz function ψ : R 7→ R, the following limits hold in
probability:

lim
N→∞

1
|CN |

∑
i∈CN

ψ(θt
i) = E[ψ(µt + τt Z)] (2.6)

lim
N→∞

1
N

∑
i∈[N ]\CN

ψ(θt
i) = E[ψ(τt Z)]. (2.7)

Here expectation is with respect to Z ∼ N(0, 1) where µt, τ
2
t are given by the recursion in

Eqs. (2.4),(2.5).

The proof of this Lemma is deferred to Section 3.1. Naively, one would like to use the
central limit theorem to approximate the distribution on the right-hand side of Eq. (2.2) or
of Eq. (2.3) by a Gaussian. This is, however, incorrect because the messages θt

`→i depend
on the matrix A and hence the summands are not independent. In fact, the lemma would
be false if we did not use the edge messages and replaced θt

`→i by θt
` in Eq. (2.2) or in

Eq. (2.3).
However, for the iteration Eq. (2.2), we prove that the distribution of θt is approximately

the same that we would obtain by using a fresh independent copy of A (given CN ) at each
iteration. The central limit theorem then can be applied to this modified iteration. In
order to prove that this approximation, we use the moment method, representing θt

i→j and
θt
i as polynomials in the entries of A. We then show that the only terms that survive in

these polynomials as N →∞ are the monomials which are of degree 0, 1 or 2 in each entry
of A.

2.3 Analysis of state evolution

Lemma 2.2 implies that the distribution of θt
i is very different depending whether i ∈ CN or

not. If i ∈ CN then θt
i is approximately N(0, τ2

t ). If instead i ∈ CN then θt
i is approximately

N(µt, τ
2
t ).

Assume that, for some choice of the functions f(·, ·) and some t, µt is positive and much
larger than τt. We can then hope to estimate CN by selecting the indices i such that θt

i is
above a certain threshold1. This motivates the following result.

Lemma 2.3. Assume that λκ > e−1/2. Inductively define:

p(z, `) =
1
L̂`

d∗∑
k=0

µ̂k
` z

k

k!
, µ̂`+1 = E[p(µ̂` + Z, `)], (2.8)

where Z ∼ N(0, 1) and the recursion is initialized with p(z, 0) = 1. Here L̂` is a normal-

ization defined, for all ` ≥ 1, by L̂2
` = E

[ (∑d∗

k=0(µ̂`Z)k/k!
)2 ]

.
Then, for any M finite there exists d∗, t∗ finite such that µ̂t∗ > M .
By setting f( · , t) = p( ·, t) in the state evolution equations (2.4) and (2.5) we obtain

µt = µ̂t and τt = 1 for all t.

The proof of this lemma is deferred to Section 3. Also, the proof clarifies that setting
f(· , t) = p( ·, t) is the optimal choice for our message passing algorithm.

1The problem is somewhat more subtle because |CN | � N , see next section.
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The basic intuition is as follows. Consider the state evolution equations (2.4) and (2.5).
Since we are only interested in maximizing the signal-to-noise ratio µt/τt we can always
normalize f( · , t) as to have τt+1 = 1. Denoting by g( · , t) the un-normalized function, we
thus have the recursion

µt+1 = λκ
E[g(µt + Z, t)]
E[g(Z, t)2]1/2

.

We want to choose g( · t) as to maximize the right-hand side. It is a simple exercise
of calculus to show that this happens for g(z, t) = eµtz. For this choice we obtain the
iteration µt+1 = λκ eµ

2
t /2 that diverges to +∞ if and only if λκ > e−1/2. Unfortunately

the resulting f is not a polynomial and is therefore not covered by Lemma 2.2. Lemma 2.3
deals with this problem by approximating the function eµtz with a polynomial.

2.4 The whole algorithm and general result

As discussed above, after t iterations of the message passing algorithm we obtain a vector
(θt

i)i∈[N ] wherein for each i, θt
i estimates the likelihood that i ∈ CN . We can therefore

select a ‘candidate’ subset for CN , by letting C̃N ≡ {i ∈ [N ] : θt
i ≥ µt/2} (this choice

is motivated by the analysis of the previous section). Since however θt
i is approximately

N(0, τ2
t ) for i ∈ [N ] \ CN , this produces a set of size |C̃N | = Θ(N), much larger than the

target CN .

Algorithm 1 Message Passing
1: Initialize: A(N) = W (N)/

√
N ; θ0

i = 1 for each i ∈ [N ]; d∗, t∗ positive integers, ρ̄ a
positive constant.

2: Define the sequence of polynomials p( · , t) for t ∈ {0, 1, . . . }, the values µ̂t as per Lemma
2.3

3: Run t∗ iterations of message passing as in Eqs. (2.2), (2.3) with f( · , t) = p( · , t)
4: Find the set C̃N = {i ∈ [N ] : θt∗

i ≥ µ̂t∗/2}.
5: Let A|C̃N

be the restriction of A to the rows and columns with index in C̃N , and
compute by power method its principal eigenvector u∗∗.

6: Compute BN ⊆ [N ] of the top |CN | entries (by absolute value) of u∗∗.
7: Return ĈN = {i ∈ [N ] : ζBN

ρ̄ (i) ≥ λ/2}.

In order to overcome this problem, we apply a cleaning procedure to reconstruct CN

from C̃N . Let A|eCN
be the restriction of A to the rows and columns with index in C̃N .

By power iteration (i.e. by the iteration ut+1 = A|eCN
ut/‖A|eCN

ut‖2, ut ∈ ReCN , with u0 =
(1, 1, . . . , 1)T) we compute a good approximation u∗∗ ≡ ut∗∗ of the principal eigenvector of
A|eCN

. We then let BN ⊆ [N ], |BN | = |CN | be the set of indices corresponding to the |CN |
largest entries of ut∗∗ (in absolute value).

The set BN has the right size and is approximately equal to CN . We correct the residual
‘mistakes’ by defining the following score for each vertex i ∈ [N ]:

ζBN
ρ (i) =

∑
j∈BN

WijI{|Wij |≤ρ}, (2.9)

and returning the set ĈN of vertices with large scores, e.g. ĈN = {i ∈ [N ] : ζBN
ρ̄ (i) ≥

λ|BN |/2}.

9



Note that the ‘cleaning’ procedure is similar to the algorithm of [AKS98]. The analysis
is however more challenging because we need to start from a set C̃N that is correlated with
the matrix A.

Lemma 2.4. Let A = W/
√
N be defined as above and C̃N ⊆ [N ] be any subset of the

column indices (possibly dependent on A). Assume that it satisfies, for ε small enough,
|C̃N ∩ CN | ≥ (1− ε)|CN | and |C̃N\CN | ≤ ε|[N ]\CN |.

Then there exists t∗∗ = O(logN) (number of iterations in the power method) such that
the cleaning procedure gives ĈN = CN with high probability.

The proof of this lemma can be found in Section 3 and uses large deviation bounds on
the principal eigenvalue of A|CN

.
The entire algorithm is summarized in Table 1. Notice that the power method has

complexity O(N2) per iteration and since we only execute O(logN) iterations, its overall
complexity is O(N2 logN). Finally the scores (2.9) can also be computed in O(N2) oper-
ations. Our analysis of the algorithm results in the following main result that generalizes
Theorem 1.

Theorem 3. Consider the hidden set problem on the complete graph GN = KN , and
assume that Q0 and Q1 are subgaussian probability distributions with mean, respectively,
0, and λ > 0. Further assume that Q0 has unit variance.

If λ|CN | ≥ (1+ε)
√
N/e then there there exists a ρ, d∗ and t∗ finite such that Algorithm

1 returns ĈN = CN with high probability on input W , with total complexity O(N2 logN).
(More explicitly, there exists δ(ε,N) with limN→∞ δ(ε,N) = 0 such that the algorithm

succeeds with probability at least 1− δ(ε,N).)

Remark 2.5. The above result can be improved if Q0 and Q1 are known by taking a
suitable transformation of the entries Wij. In particular, assuming2 that Q1 is absolutely
continuous with respect to Q0, the optimal such transformation is obtained by setting

Aij ≡
1√
N

[
dQ1

dQ0
(Wij)− 1

]
.

Here dP/dQ denotes the Radón-Nikodym derivative of P with respect to Q. If the resulting
Aij is subgaussian with scale ρ/N , then our analysis above applies. Theorem 3 remains
unchanged, provided the parameter λ is replaced by the `2 distance between Q0 and Q1:

λ̃ ≡

{∫ [
dQ1

dQ0
(x)− 1

]2

Q0(dx)

}1/2

. (2.10)

3 Proof of Theorem 3

In this section we present the proof of Theorem 3 and of the auxiliary Lemmas 2.2, 2.3
and 2.4.

We begin by showing how these technical lemmas imply Theorem 3. First consider a
sequence of instances with limN→∞ |CN |/

√
N = limN→∞ κN = κ such that κλ < 1/

√
e.

We will prove that Algorithm 1 returns ĈN = CN with probability converging to one as
N →∞.

2If Q1 is singular with respect to Q0 the problem is simpler but requires a bit more care.
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By Lemma 2.2, we have, in probability

lim
N→∞

|C̃N ∩ CN |
|CN |

= lim
N→∞

1
|CN |

∑
i∈CN

I(θt∗
i ≥ µ̂t∗/2) = E{I(µt∗ + τtZ ≥ µ̂t∗/2)} .

Notice that, in the second step, we applied Lemma 2.2, to the function ψ(z) ≡ I(x ≥ µ̂t∗/2).
While this is not Lipschitz continuous, it can approximated from above and below pointwise
by Lipschitz continuous functions. This is sufficient to obtain the claimed convergence as
in standard weak convergence arguments [Bil08].

Since we used f( · , t) = p( · , t), we have, by Lemma 2.3, µt = µ̂t and τt = 1. Denoting
by Φ(z) ≡

∫ z
−∞ e−x2/2dx/

√
2π the Gaussian distribution function, we thus have

lim
N→∞

|C̃N ∩ CN |
|CN |

= 1− Φ(−µ̂∗t /2) ≥ 1− e−M2/8 .

where in the last step we used Φ(−a) ≤ e−a2/2 for a ≥ 0 and Lemma 2.3. By taking
M2 ≥ 8 log(2/ε) we can ensure that the last expression is larger than (1 − ε/2) and
therefore |C̃N ∩ CN | ≥ (1− ε)|CN | with high probability.

By a similar argument we have, in probability

lim
N→∞

|C̃N |
N

= Φ(−µ̂∗t /2) ≤ ε

2
,

and hence |C̃N | ≤ ε|[N ] \ CN | with high probability.
We can therefore apply Lemma 2.4 and conclude that Algorithm 1 succeeds with high

probability for κN = |CN |/
√
N → κ > 1/

√
λ2e.

In order to complete the proof, we need to prove that the Algorithm 1 succeeds with
probability at least 1−δ(ε,N) for all |CN | ≥ (1+ε)

√
N/(λ2e). Notice that, without loss of

generality we can assume κN ∈ [(1+ε)/
√
λ2e,K] with K a large enough constant (because

for κN > K the problem becomes easier and –for instance– the proof of [AKS98] already
works). If the claim was false there would be a sequence of values {κN}N≥1 indexed by
N such that the success probability remains bounded away from one along the sequence.
But since [(1 + ε)/

√
λ2e,K] is compact, this sequence has a converging subsequence along

which the success probability remains bounded. This contradicts the above.

3.1 Proof of Lemma 2.2

It is convenient to collate the assumptions we make on our problem instances as follows.

Definition 3.1. We say {A(N),FN , θ
0
N}{N≥1} is a (C, d)-regular sequence if:

1. For each N , A(N) = WN/
√
N where WN satisfies Assumption 2.1.

2. For each t ≥ 0, f(·, t) ∈ FN is a polynomial with maximum degree d and coefficients
bounded in absolute value by C.

3. Each entry of the initial condition θ0
N is 1.

Let At, t ≥ 1 be i.i.d. matrices distributed as A conditional on the set CN , and let
A0 ≡ A. We now define the sequence of N ×N matrices {ξt}t≥0 and a sequence of vectors
in RN , {ξt}t≥1 (indexed as before) given by:

11



ξt+1
i→j =

∑
`∈[N ]\{i,j}

At
i`f(ξt

`→i, t) (3.1)

ξ0i→j = θ0
i ∀ j 6= i ∈ [N ]

ξt
i→i = 0 ∀ t ≥ 0, i ∈ [N ]

ξt+1
i =

∑
`∈[N ]\i

At
`if(ξt

`→i, t) (3.2)

The asymptotic marginals of the iterates ξt are easier to compute since the matrix At−1

is independent of the ξt−1 by definition. We proceed, hence by proving that ξt and θt have,
asymptotically in N , the same moments of all orders computing the distribution for the ξt.

The messages θt
i→j and ξt

i→j can be described explicitly via a sum over a family of finite
rooted labeled trees. We now describe this family in detail. All edges are assumed directed
towards the root. The leaves of the tree are those vertices with no children, and the set
of leaves is denoted by L(T ). We let V (T ) denote the set of vertices of T and E(T ) the
set of (directed) edges in T . The root has a label in [N ] called its “type”. Every non-root
vertex has a label in [N ] × {0, 1, . . . , d}, the first argument the label being the “type” of
the vertex, and the second being the “mark”. For a vertex v ∈ T we let l(v) denote its
type, r(v) its mark and |v| its distance from the root in T .

Definition 3.2. Let T t be the family of labeled trees T with exactly t generations satisfying
the conditions:

1. The root of T has degree 1.

2. Any path v1, v2 . . . vk in the tree is non-backtracking i.e. the types l(vi), l(vi+1), l(vi+2)
are distinct.

3. For a vertex u that is not the a root or a leaf, the mark r(u) is set to the number of
children of v.

4. We have that t = maxv∈L(T ) |v|. All leaves u ∈ L(T ) with non-maximal depth, i.e.
|u| ≤ t− 1 have mark 0.

Let T t
i→j ⊂ T t be the subfamily satisfying, in addition, the following:

1. The type of the root is i.

2. The root has a single child with type distinct from i and j.

In a similar fashion, let T t
i ⊂ T t be the subfamily satisfying, additionally:

1. The type of the root is i.

2. The root has a single child with type distinct from i.

Let the polynomial f(x, t) be represented as:

f(x, t) =
d∑

i=0

qt
ix

i

12



For a labeled tree T ∈ T t and vector of coefficients q = (qs
i )s≤t,i≤d we now define three

weights:

A(T ) ≡
∏

u→v∈E(T )

Al(u)l(v) (3.3)

Γ(T,q, t) ≡
∏

u→v∈E(T )

q
t−|u|
r(u) (3.4)

θ(T ) ≡
∏

u∈L(T )

(θ0
l(u))

r(u) (3.5)

We now are in a position to provide an explicit expression for θt
i→j in terms of a summation

over an appropriate family of labeled trees.

Lemma 3.3. Let {A(N),FN , θ
0
N} be a (C, d)-regular sequence. The orbit θt satisfies:

θt
i→j =

∑
T∈T t

i→j

A(T )Γ(T,q, t)θ(T ) (3.6)

θt
i =

∑
T∈T t

i

A(T )Γ(T,q, t)θ(T ) (3.7)

Proof. We prove Eq. (3.6) using induction. The proof of Eq. (3.7) is very similar. We have,
by definition, that:

θ1
i→j =

∑
`∈[N ]\i,j

∑
k≤d

A`iq
0
k(θ

0
` )

k

This is what is given by Eq. (3.6) since T 1
i→j is exactly the set of trees with two vertices

joined by a single edge, the root having type i, the other vertex (say v) having type
l(v) /∈ {i, j} and mark r(v) ≤ d.

Now we assume Eq. (3.6) to be true up to t. For iteration t+1, we obtain by definition:

θt+1
i→j =

∑
`∈[N ]\{i,j}

A`i

∑
k≤d

qt
k(θ

t
`→i)

k

=
∑

`∈[N ]\{i,j}

∑
k≤d

∑
T1···Tk∈T t

`→i

A`iq
t
k

k∏
m=1

A(Tm)Γ(Tm,q, t)θ(Tm)

Notice that T t+1
i→j is in bijection with the set of pairs containing a vertex of type ` /∈ {i, j}

and a k-tuple of trees belonging to T t
`→i. This is because one can form a tree in T t+1

i→j

by choosing a root with type i, its child v with type ` /∈ {i, j} and choosing a k(≤ d)-
tuple of trees from T t

`→i, identifying their roots with v and setting r(v) = k. With this,
absorbing the factors of A`i into

∏k
m=1A(Tm) and qt

k into
∏k

m=1 Γ(Tm,q, t) yields the
desired claim.

From a very similar argument as above we obtain that:

ξt
i→j =

∑
T∈T t

i→j

Ā(T )Γ(T,q, t)θ(T )

ξt
i =

∑
T∈T t

i

Ā(T )Γ(T,q, t)θ(T )
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where the weight Ā(T ) for a labeled tree T is defined (similar to Eq. (3.3)) by:

Ā(T ) ≡
∏

u→v∈E(T )

A
t−|u|
l(u)l(v) (3.8)

We now prove that the moments of θt
i and ξt

i are asymptotically (in the large N limit)
the same via the following:

Proposition 3.4. Let {A(N),FN , θ
0
N} be a (C, d)-regular sequence. the conditions above.

Then, for any t ≥ 1, there exists a constant K independent of N (depending possibly on
m, t, d, C) such that for any i ∈ [N ]:∣∣E [(θt

i)
m
]
− E

[
(ξt

i)
m
]∣∣ ≤ KN−1/2

Proof. According to our initial condition, θ0,N has all entries 1. Then, using the tree
representation we have that:

E
[
(θt

i)
m
]

=
∑

T1,...,Tm∈T t
i

[
m∏

`=1

Γ(T`,q, t)

]
E

[
m∏

`=1

A(T`)

]
(3.9)

E
[
(ξt

i)
m
]

=
∑

T1,...,Tm∈T t
i

[
m∏

`=1

Γ(T`,q, t)

]
E

[
m∏

`=1

Ā(T`)

]
(3.10)

Define the multiplicity φ(T )rs to be the number of occurrences of an edge u→ v in the
tree T with types l(u), l(v) ∈ {r, s}. Also let G denote the graph obtained by identifying
vertices of the same type in the tuple of trees T1, . . . Tm. We let G|CN

denote its restriction
to the vertices in CN and G|Cc

N
be the graph restricted to Cc

N . Let E(G|CN
) and E(G|Cc

N
)

denote the (disjoint) edge sets of these graphs and EJ denote the edges in G not present
in either G|CN

or G|Cc
N

. In other words, EJ consists of all edges in G with one endpoint
belonging to CN and one end point outside it. The edge sets here do not count multiplicity.

For analysis, we first split the sum over m-tuples of trees above into three terms as
follows:

1. S(A): the sum over all m-tuples of trees T1, . . . , Tm such that there exists an edge rs
in E(G|Cc

N
) ∪ EJ which is covered at least 3 times.

2. R(A): the sum over all m-tuples of trees such that each edge in E(G|Cc
N

) ∪ EJ is
covered either 0 or 2 times, and the graph G contains a cycle.

3. T (A): the sum over all m-tuples of trees such that each edge in E(G|Cc
N

) ∪ EJ is
covered either 0 or 2 times, and the graph G is a tree.

We also define analogous terms S(Ā), R(Ā) and T (Ā) in the same fashion. We have
that |

∏m
`=1 Γ(T`,q, t)| ≤ Cmdt+1

since the coefficients are bounded by C and the number
of edges in the tree by dt+1. We thus concentrate on the portion E [

∏m
`=1A(T`)]. When

E [
∏m

`=1A(T`)] = 0, some edge in E(G|Cc
N

) ∪ EJ is covered exactly once. This implies
E
[∏m

`=1 Ā(T`)
]

= 0 = E [
∏m

`=1A(T`)], since the same edge is covered only once in any
generation. This guarantees that we need only consider the contributions S(A), R(A) and
T (A) as above in the sums Eq. (3.9), Eq. (3.10).
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We first consider the contribution S(A). We have:

E

[
m∏

`=1

A(T`)

]
= E

[∏
j<k

(Ajk)
Pm

`=1 φ(T`)jk

]

≤ E

∏
j<k

|Ajk|
Pm

`=1 φ(T`)jk


=
∏
j<k

E
[
|Ajk|

Pm
`=1 φ(T`)jk

]
≤ C1

(
1√
N

)α

, (3.11)

where α = α(T1, . . . , Tm) is the total number of edges (with multiplicity) in the tuple
of trees T1, . . . , Tm. The last inequality follows from Lemma A.2 and observing that for
any j, k, Ajk is subgaussian with scale parameter ρ/N . The constant C1 = C1(T1, . . . Tm)
absorbs the leading factors from Lemma A.2, and is independent of N .

To track the dependence on N , note that the graph G is connected since the roots of all
the trees have type i. Let n(G|CN

) [resp. n(G|Cc
N

)] denote the number of vertices in G|CN

[resp. G|Cc
N

] not counting the root. Counting the edges with multiplicities, we have 3 +
|E(G|CN

)|+2(|E(G|Cc
N

)|+|EJ |−1) ≤ α, implying |E(G|CN
)|+2(|E(G|Cc

N
)|+|EJ |) ≤ α−1.

By connectivity of G and the fact that each component in G|Cc
N

is connected by at least one
edge to a vertex of G|CN

we have that n(G|Cc
N

)+n(G|CN
) ≤ |EJ |+ |E(G|Cc

N
)|+ |E(G|CN

)|
and n(G|Cc

N
) ≤ |EJ |+ |E(G|Cc

N
)|. Combining we get:

n(G|CN
) + 2n(G|Cc

N
) ≤ |E(G|CN

)|+ 2(|E(G|Cc
N

)|+ |EJ |)
≤ α− 1

For a candidate graph G, the number of possible labels of types is upper bounded by

no. of possible labeling of G ≤ 2n(G|CN
)+n(G|Cc

N
)(κN

√
N)n(G|CN

)(N)n(G|Cc
N

)

≤ (4κ
√
N)α−1,

for large enough N . Denote by U t
i the set of trees T t

i with the labels removed. We then
have, using the above and Eq. (3.11)

|S(A)| ≤ Cmdt+1
∑

(Ut
i )m

C1(
√
N)−α(4κ

√
N)α−1

≤ C2N
−1/2, (3.12)

where we absorbed the summation over (U t
i )

m into C2 since it is independent of N . The
constant C1 appears because the same tuple of (unlabeled) trees can yield different (can-
didate) graphs G, however their total number is independent of N .

Indeed, we can do a similar calculation to obtain that |R(A)| is O(N−1/2). For such a
graph, n(G|CN

)+n(G|Cc
N

) = |E(G|CN
)|+ |E(G|Cc

N
)|+ |EJ |−a for some a ≥ 1 when G has

at least one cycle. We have |E(G|CN
)| + 2(|E(G|Cc

N
)| + |EJ |) ≤ α by counting minimum

multiplicities and n(G|Cc
N

) ≤ |E(G|Cc
N

)|+ |EJ | by connectivity argument. Thus:

n(G|CN
) + 2n(G|Cc

N
) ≤ α− a

≤ α− 1.
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The number of possible labels for G is thus bounded above by (4κ
√
N)α−1. Following the

same argument as before, we get:

|R(A)| ≤ C3N
−1/2, (3.13)

for some constant C3 dependent only on m, d, t, κ. We note here that the same bounds
hold for S(Ā) and R(Ā). Indeed, let ϕ(T )g

rs denote the number of times an edge u → v
of (distinct) types l(u), l(v) ∈ {r, s} is covered with |u| = g. By definition, it follows that∑

g ϕ(T )g
rs = φ(T )rs. We then obtain:

E

[
m∏

`=1

Ā(T`)

]
= E

[∏
j<k

∏
g

(Ag−1
jk )

Pm
`=1 ϕ(T`)

g
jk

]

≤ E

∏
j<k

∏
g

|Ag−1
jk |

Pm
`=1

P
g ϕ(T`)

g
jk


= C4

(
1√
N

)α

, (3.14)

This can be used in place of Eq. (3.11) to obtain the required bounds on S(Ā) and R(Ā).
By the bounds Eq. (3.12), Eq. (3.13), to prove our result we only need to concentrate on

T (A). It suffices to show that T (A) = T (Ā). We first consider the case E [
∏m

`=1A(T`)] 6=
0 = E

[∏m
`=1 Ā(T`)

]
. This implies that there exists an edge rs in E(G|Cc

N
) ∪ EJ with

multiplicity 2, but appearing in different generations in the tuple of trees. Suppose they
appear on the same branch of the tree, call it T1. Then there exists a → b and c → d
with {l(a), l(b)} = {l(c), l(d)} = {i, j} with a → b on the path from c to the root. Due
to the non-backtracking property, a 6= d. However, then these edges form a cycle in G
(formed of the edges from d to a) because the tree is non-backtracking and we arrive at
a contradiction. Now suppose the edges a → b and c → d as above appear in different
generations in distinct trees T1 and T2 respectively. Then as the roots of the T`’s identify to
the same vertex, and the trees are non back-tracking, these form a cycle in G and we arrive
at a contradiction. Using the same argument, we see that such edges as a→ b and c→ d
above cannot exist even on different branches of the same tree in different generations.

Now assume E
[∏m

`=1 Ā(T`)
]
6= 0. This means that every edge in E(G|Cc

N
) ∪ EJ is

covered exactly twice in the same generation and every edge in E(G|CN
) is covered at most

twice. Then, if E
[∏m

`=1 Ā(T`)
]
6= E [

∏m
`=1A(T`)], there must exist an edge rs ∈ E(G|CN

)
covered twice i.e. with multiplicity, but in two different generations. However, by the
argument given previously, this is not possible. We thus obtain that T (A) = T (Ā). Using
this and the bounds on S(A), R(A) we obtain the required result, for an appropriately
adjusted leading constant K depending on m, d, t and κ.

Before proceeding, we prove the following results that are useful to establish state
evolution.

Lemma 3.5. Consider the situation as assumed in Lemma 3.4. Then we have, for some
constants Km(m, d, t, κ),K ′

m(m, d, t, κ) independent of N that:

|E[(ξt
i→j)

m]| ≤ Km

|E(ξt
i)

m| ≤ K ′
m
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Proof. We prove the claim for ξt
i→j . The other claim follows by essentially the same

argument. Recall from the tree representation of Lemma 3.3:

E[(ξt
i→j)

m] =
∑

T1,...,Tm∈T t
i→j

[
m∏

`=1

Γ(T`,q, t)

]
E

[
m∏

`=1

Ā(T`)

]

Using the same splitting of contributions to the above sum into S(Ā), R(Ā) and T (Ā) as
in Lemma 3.4, we see that it is sufficient to prove that |T (A)| is bounded uniformly over
N . We have:

|T (Ā)| =
∑

T1,...,Tm

[
m∏

`=1

Γ(T`,q, t)

]
E

[
m∏

`=1

Ā(T`)

]
≤

∑
T1,...Tm

Cdt+1
C1(

√
N)α,

where α = α(T1, . . . , Tm) is the number of edges counted with multiplicity and T1, . . . Tm

ranges over m-tuples of trees such that the graph G (formed by identifying vertices of
the same type) is a tree. Define n(G|CN

), n(G|Cc
N

), E(G|CN
), E(G|Cc

N
) and EJ as in

Lemma 3.4. By an argument similar to that for bounding R(A), we obtain that n(G|CN
)+

2n(G|Cc
N

) = α. Thus we get:

|T (Ā)| ≤ C5(
√
N)−α(4κ

√
N)α

≤ Km,

where Km = K(m, d, t, κ) is a constant independent of N . For convenience, we make only
the dependence on m explicit. The result follows, after a small change in the constant K
since the other contributions S(Ā) and R(Ā) are O(N−1/2).

Lemma 3.6. Consider the situation as in Lemma 3.4. Then we have:

lim
N→∞

Var

 1
|CN |

∑
i∈CN

(ξt
i)

m

 = 0

lim
N→∞

Var

 1
|CN |

∑
i∈CN\j

(ξt
i→j)

m

 = 0

lim
N→∞

Var

 1
N

∑
i∈[N ]\CN

(ξt
i)

m

 = 0

lim
N→∞

Var

 1
N

∑
i∈[N ]\CN ,j

(ξt
i→j)

m

 = 0

lim
N→∞

Var

 1
N

∑
i∈[N ]

(ξt
i)

m

 = 0

lim
N→∞

Var

 1
N

∑
i∈[N ]\j

(ξt
i→j)

m

 = 0,

17



where Var(·) denotes the variance of the argument. The same results hold with θt instead
of ξt.

Proof. We prove only the first claim in detail. The proofs for the rest of the claims follow
the same analysis. To begin with:

Var

 1
|CN |

∑
i∈CN

(ξt
i)

m

 =
1

|CN |2
∑

i,j∈CN

(
E
[
(ξt

i)
m(ξt

j)
m
]
− E

[
(ξt

i)
m
]
E
[
(ξt

j)
m
])
.

Note that the terms wherein i = j are O(|CN |), using Lemma 3.5. We now control each
of the remaining summands, where i, j distinct, in the following fashion. Fix a pair i, j.
The summand

(
E
[
(ξt

i)
m(ξt

j)
m
]
− E

[
(ξt

i)
m
]
E
[
(ξt

j)
m
])

can be written as a summation over

2m-tuples of trees T1, . . . , Tm, T
′
1, . . . , T

′
m where the first m belong to T t

i and the last m to
T t

j . Let G denote the simple graph obtained by identifying vertices of the same type in the
tuple T1, . . . , Tm, T

′
1, . . . , T

′
m. Let G|CN

and G|Cc
N

be subgraphs defined as in Proposition
3.4. The terms in which G is disconnected with one component containing i and the other
containing j, are identical in E

[
(ξt

i)
m(ξt

j)
m
]

and E
[
(ξt

i)
m
]
E
[
(ξt

j)
m
]

and hence cancel each
other. If G is connected, by the argument in Lemma 3.4 all terms where G is not a tree,
or when G|Cc

N
contains an edge covered thrice or more have vanishing contributions. It

remains to check the contributions of terms where G is a connected tree, and every edge
in G|Cc

N
is covered at exactly twice. Defining n(G|CN

), n(G|Cc
N

), E(G|CN
), E(G|Cc

N
) and

EJ as before, we have that n(G|CN
) + n(G|Cc

N
) ≤ E(G|CN

) + E(G|Cc
N

) + EJ − 1 since
types i and j have been fixed. As before n(G|Cc

N
) ≤ E(G|Cc

N
) + EJ by connectivity and

E(G|CN
)+2(E(G|Cc

N
)+EJ) ≤ α where α is the number of edges counted with multiplicity.

This yields n(G|CN
) + 2n(G|Cc

N
) ≤ α− 1. The total number of such terms is thus at most

O(N (α−1)/2), while their weight is bounded by O(N−α/2). Their overall contribution,
consequently, vanishes in limit. We thus have ∀i 6= j ∈ CN :

E
[
(ξt

i)
m(ξt

j)
m
]
− E

[
(ξt

i)
m
]
E
[
(ξt

j)
m
]
≤ ε(N),

where ε(N) → 0 as N →∞. This gives:

Var

 1
|CN |

∑
i∈CN

(ξt
i)

m

 ≤ O(|CN |−1) + ε(N),

and the first claim follows.
The other claims follow using the same argument, and since |CN | = o(N).

Proposition 3.7. Let µt, τt be given as in Eqs. 2.4, 2.5. Consider (A(N),FN , θ
0
N )N≥1

a sequence of (C, d)-regular MP instances. Then the following limits hold for each m ≥ 1
and t ≥ 0:

lim
N→∞

E[(θt
i)

m] = E[(µt + Zt)m] if i ∈ CN (3.15)

lim
N→∞

E[(θt
i)

m] = E[(Zt)m] otherwise. (3.16)

where Zt ∼ N(0, τ2
t ).
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Proof. Fix j 6= i. We prove by induction over t that for all t ≥ 0 and m ≥ 1:

lim
N→∞

E[(ξt+1
i→j)

m] = E[(µt+1 + Zt+1)m] if i ∈ CN (3.17)

lim
N→∞

E[(ξt+1
i→j)

m] = E[(Zt+1)m] otherwise (3.18)

lim
N→∞

1
|CN |

∑
k∈CN

(ξt+1
k→j)

m = E[(µt+1 + Zt+1)m] (3.19)

lim
N→∞

1
N

∑
k∈[N ]\CN

(ξt+1
k→j)

m = E[(Zt+1)m], (3.20)

where Eqs. (3.19) and (3.20) hold in probability. For t ≥ 1, denote by Ft the σ-algebra
generated by A0, . . . , At−1. For convenience of notation, we write Ãt

ij as the centered
version of At

ij . Hence Ãij = Aij − λ/
√
N if both i, j ∈ CN , else Ãij = Aij . First consider

the case where index i ∈ CN . Then we have, for any j 6= i:

lim
N→∞

E
[
ξt+1
i→j |Ft

]
= lim

N→∞
E
[ ∑

`∈CN\j

At
`if(ξt

`→i, t) +
∑

`∈[N ]\CN ,j

At
`if(ξt

`→i, t)
∣∣∣∣Ft

]
= λκE[f(µt + Zt, t)] in probability
= µt+1,

where Zt ∼ N(0, τ2
t ). Here the second equality follows from the induction hypothesis and

the third from definition. Considering the variance we have:

lim
N→∞

Var
[
ξt+1
i→j |Ft

]
= lim

N→∞
E
[ ∑

`∈[N ]\j

(Ãt
`if(ξt

`→i, t))
2

∣∣∣∣Ft

]
= lim

N→∞

1
N

∑
`∈[N ]\j

(f(ξt
`→i, t))

2

= E[f(Zt, t)2]

= τ2
t+1,

where the penultimate equality holds in probability, and follows from the induction hy-
pothesis.

Notice that [ξt+1
i→j |Ft−E(ξt+1

i→j |Ft)] is a sum of independent random variables (due to the
conditioning on Ft). We show that, in probability, the Lindeberg condition for the central
limit theorem holds. By the induction hypothesis we have, in probability:

lim
N→∞

1
N

∑
`∈[N ]\j

(f(ξt
`→i, t))

4 = E
[
(f(Zt, t))4

]

Using this we have, for any ε > 0:∑
`∈[N ]\j

E
[
(Ã`if(ξt

`→i, t))
2I{|Ã`if(ξt

`→i,t)|≥ε}

∣∣∣∣Ft

]
≤ C6

( ρ

εN

)2 ∑
`∈[N ]\j

(f(ξt
`→i, t))

4 p→ 0,
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using the induction hypothesis and Lemma A.2. The constant C6 here comes from the
leading factors in Lemma A.2. It follows from Lemma A.1 that for a bounded function
h : R → R with bounded first, second and third derivatives that:

lim
N→∞

E[h(ξt+1
i→j)|Ft] = E[h(Zt+1 + µt+1)] in probability.

Since the functions h+
m(x) = (xm)+ and h−m(x) = (xm)− for m ≥ 3 can be approached

pointwise by a sequence of bounded functions with bounded first, second and third deriva-
tives and since E

[
(ξt+1

i→j)
m|Ft

]
is integrable by definition we have :

lim
N→∞

E
[
(ξt+1

i→j)
m|Ft

]
= E [(µt+1 + Zt+1)m] in probability.

By the tower property of conditional expectation and Lemma 3.5, the expectations also
converge yielding the induction claim Eq. (3.17). Employing Chebyshev inequality and
Lemma 3.6 on the sequence

{∑
k∈CN

(ξt+1
k→j)

m/|CN |
}

N≥1
, we obtain the induction claim

Eq. (3.19).
We now turn to the case when i /∈ CN . By Eq. (3.1):

E[ξt+1
i→j |Ft] = E

[ ∑
`∈[N ]\j

Ãt
`if(ξt

`→i, t)
∣∣∣∣Ft

]
= 0.

For the variance we compute:

lim
N→∞

Var[ξt+1
i→j |Ft] = lim

N→∞
E
[ ∑

`∈[N ]\j

(Ãt
`if(ξt

`→i, t))
2

]
= lim

N→∞

1
N

∑
i∈[N ]\j

(f(ξt
`→i, t))

2

= E[(f(Zt, t))2]

= τ2
t+1.

The penultimate equality holds in probability, from the induction hypothesis and the last
equality by definition. Proceeding exactly as before, we obtain induction claim Eq. (3.18)
and the claim Eq. (3.20).

The base case is simpler since for t = 0, F0 is taken to be trivial. When i ∈ CN we
have:

lim
N→∞

E
[
ξ1i→j

]
= lim

N→∞
E
[ ∑

`∈CN\j

A0
`if(1, 0) +

∑
`∈[N ]\CN ,j

A0
`if(1, 0)

]
= µ1,

and for the variance:

lim
N→∞

Var
[
ξ1i→j

]
= lim

N→∞
E
[ ∑

`∈[N ]\j

(Ã0
`if(1, 0))2

]
= lim

N→∞

1
N

∑
`∈[N ]\CN ,j

(f(1, 0))2

= τ2
1 ,

20



by definition. It follows from the central limit theorem that ξ1i→j
d⇒N(µ1, τ

2
1 ) when i ∈ CN .

A very similar argument yields that ξ1i→j
d⇒N(0, τ2

1 ) when i /∈ CN . Eqs. (3.17), (3.18),
(3.19) and (3.20) follow for t = 0 using Lemma 3.5.

The proofs for ξt
i follow from essentially the same argument except that the required

sums are modified to include the vertex j. Asymptotically in N , this has no effect on the
result and we obtain the following limits:

lim
N→∞

E[(ξt
i)

m] = E[(µt + Zt)m] if i ∈ CN (3.21)

lim
N→∞

E[(ξt
i)

m] = E[(Zt)m] otherwise (3.22)

lim
N→∞

1
|CN |

∑
i∈CN

(ξt
i)

m = E[(µt + Zt)m] in probability (3.23)

lim
N→∞

1
N

∑
i∈[N ]\CN

(ξt
i)

m = E[(Zt)m] in probability. (3.24)

Using Eqs. (3.21), (3.22) and Proposition 3.4 the result follows.

We can now prove Lemma 2.2. For brevity, we show only Eq. (2.7) as the argument
for Eq. (2.6) is analogous. To show Eq. (2.7) it suffices to show that, for any subsequence
{Nk} there exists a refinement {N ′

k} such that:

1
N ′

k

∑
i=1∈[N ′

k]\CN′
k

ψ(θt
i) = E[ψ(Zt)] a.s. (3.25)

Fix a subsequence {Nk}. By Chebyshev inequality, Lemma 3.6 and Proposition 3.7
there exists a refinement {Nk(1)} ⊆ {Nk} such that:

lim
k→∞

1
Nk(1)

∑
i∈[Nk(1)]\CNk(1)

θt
i = E[Zt] a.s.

By the same argument, for each m ∈ N, there exists a refinement {Nk(m)} ⊆ {Nk(m− 1)}
such that:

lim
k→∞

1
Nk(m)

∑
i∈[Nk(m)]\CNk(m)

(θt
i)

m = E[Zt] a.s.

Let N ′
k be the sequence Nk(k). Then, for all m ≥ 1:

lim
k→∞

1
N ′

k

∑
i∈[N ′

k]\CN′
k

(θt
i)

m = E[(Zt)m] a.s. (3.26)

We define the empirical measure µN (.) as follows:

µN (·) =
1
N

∑
i∈[N ]\CN

δθt
i
(·)

Eq. (3.26) guarantees that, almost surely, the moments of µN ′
k

converge to that of Zt. By
the moment method, Eq. (3.25) follows and we obtain the required result of Eq. (2.7).
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3.2 Proof of Lemma 2.3

This is section is devoted to proving Lemma 2.3. In particular, our derivation will justify
the construction of polynomials in the statement of the lemma, cf. Eq. (2.8).

We will first consider the state evolution recursion (2.4), (2.5) for a general sequence
of functions {f( · , t)}t≥0 (not necessarily polynomials). Since we are only interested in the
ratio µt/τt, there is no loss of generality in assuming that f is normalized in such a way
that τ1

t = 1 for all t, i.e. E[f(Z, t)2] = 1 for all t.

Lemma 3.8. Let µt be defined recursively for all t ≥ 0 by letting

µt+1 = λκ eµ
2
t /2 , µ0 = 1 . (3.27)

Further, given a sequence of functions f ≡ {f( · , t)}t≥0, such that E[f(Z, t)2] = 1 for all t,
let µ(f)

t be the corresponding state evolution sequence defined by

µ
(f)
t+1 = λκE[f(µ(f) + Z)] , µ

(f)
0 = 1 .

Then µ
(f)
t ≤ µt for all t, with equality verifed for t > 0 if and only if

f(z, `) = eµ`z−µ2
` for 0 ≤ ` ≤ t .

Further limt→∞ µt = ∞ if and only if λκ > e−1/2.

Proof. For the initial condition µ(f)
0 = 1, τ0 = 0, it is easy to see that the choice of normal-

ization ensures that we need only fix f(1, 0) = 1 which is satisfied by the choice above. We
have, for Z ∼ N(0, 1), and ` ≥ 0:

µ
(f)
`+1 = λκE[f(µ(f)

` + Z)]

= λκ

∫
R
f(z)e−(z−µ

(f)
` )2/2 dz√

2π

= λκ e−(µ
(f)
` )2/2E

[
f(Z)eµ

(f)
` Z

]
≤ λκ e−(µ

(f)
` )2/2

(
E
[
(f(Z, `)2

])1/2
e(µ

(f)
` )2 ,

where the inequality follows from Cauchy-Schwartz. By our choice of normalization we
obtain:

µ
(f)
`+1 ≤ λκ e(µ

(f)
` )2/2.

Since the inequality is satisfied as equality only by the choice f(z, `) = eµ`z−µ2
` , we have

proved that µ(f)
t = µt only for this choice.

The last statement (namely µt → ∞ if and only if λκ > e−1/2) is a simple calculus
exercise.

We are now in position to prove Lemma 2.3.

Proof of Lemma 2.3. Let {µt}t≥0 be given as per Eq. (3.27) and define t∗ ≡ inf{t : µt∗ >
2M}. The condition λκ > e−1/2 ensures that t∗ is finite. For a fixed d, define the mappings
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g, ĝd : R × R → R by letting g(z, µ) = eµz and ĝ(z, µ) =
∑d

k=0 µ
kzk/k!. Then, since the

Taylor series of the exponential has infinite radius of convergence, we have, for all z, µ ∈ R,

lim
d→∞

ĝd(z, µ) = g(z, µ) . (3.28)

In the rest of this proof we will –for the sake of simplicity– omit the subscript d.
For any µ ∈ R and Z ∼ N(0, 1), we define:

G(µ) =
1
L

E [λκ g(µ+ Z, µ)]

Ĝ(µ) =
1
L̂

E [λκ ĝ(µ+ Z, µ)] ,

where L = (E[g(Z, µ)2])1/2 and L̂ = (E[ĝ(Z, µ)2])1/2. We first obtain that:

|G(µ)− Ĝ(µ)| ≤ G(µ)
|L− L̂|
L̂

+
λκ

L̂

∣∣E [(g(µ+ Z, µ)− ĝ(µ+ Z, µ))eµZ
]∣∣ . (3.29)

Note that |g(z, µ)|, |ĝ(z, µ)| ≤ eµ|z|. It follows from Eq. (3.28) and dominated convergence
that L̂→ L and E[ĝ(µ+ Z, µ)] → E[g(µ+ Z, µ)] as d→∞.

By compactness, for any δ > 0, we can choose d∗ < ∞ such that |G(µ) − Ĝ(µ)| ≤ δ
for 0 ≤ µ ≤ 2M . Here d∗ is a function of δ,M . Note that we can now rewrite the state
evolution recursions as follows:

µ`+1 = G(µ`),

µ̂`+1 = Ĝ(µ̂`),

with µ0 = µ̂0 = 1. Define ∆` = |µ` − µ̂`|. Then using the fact that G(µ) is convex and
that G′(µ) = λκµ eµ

2/2 is bounded by M ′ = G′(2M) we obtain:

µ̂`+1 = Ĝ(µ̂`)
≥ G(µ̂`)− δ

≥ G(µ`)−M ′|µ` − µ̂`| − δ

= µ`+1 −M ′∆` − δ.

This implies:

∆`+1 ≤M ′∆` + δ.

By induction, since ∆0 = |µ0 − µ̂0| = 0, we obtain:

∆` ≤

(
`−1∑
k=0

(M ′)k

)
δ

=
M ′` − 1
M ′ − 1

δ.

Now, choosing d∗ such that δ = M(M ′ − 1)/2(M ′t∗ − 1) we obtain that ∆t∗ ≤ M/2,
implying that µ̂t∗ > 3M/2 > M .
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3.3 Proof of Lemma 2.4

Let A|eCN
be the matrix A, restricted to the rows (and columns) in C̃N . Also let v ∈ R|eCN |

denote the unit norm indicator vector on C̃N ∩ CN , i.e.

vi =

{
|C̃N ∩ CN |−1/2 if i ∈ C̃N ∩ CN ,

0 otherwise.

Define Ã|eCN
to be a centered matrix such that:

A|eCN
=
λ|C̃N ∩ CN |√

N
vvT + Ã|eCN

Throughout this proof we assume for simplicity that κN = κ, i.e. |CN | = κ
√
N for some

constant κ independent of N . The case of κN dependent on N with limN→∞ κN = κ can
be covered by a vanishing shift in the constants presented.

Assume that C̃N is a fixed subset selected independently of A. Then the matrix Ã|eCN

has independent, zero-mean entries which are subgaussian with scale factor ρ/N . Let u
denote the principal eigenvector of A|eCN

. The set BN ⊂ [N ] consists of the indices of the
|CN | entries of u with largest absolute value.

We first show that the set BN contains a large fraction of CN . By the condition on C̃N ,
we have that ‖A|eCN

− Ã|eCN
‖2 ≥ λκ(1 − ε). By Lemma A.3 in Appendix A, for a fixed δ,

‖Ã|eCN
‖2 ≤ λ(1− ε)κδ with probability at least 2(5ξ)Ne−N(ξ−1) where ξ = δ2/32ρε.

Using matrix perturbation theory, we get

‖u− v‖2 ≤
√

2 sin θ(u, v)

≤
√

2
‖Ã|eCN

‖2

λ(1− ε)κN − ‖Ã|eCN
‖2

≤ 1.9 δ,

where the second inequality follows by the sin θ theorem [DK70].
We run t∗∗ = O(logN/δ) iterations of the power method, with initialization u0 =

(1, 1, . . . , 1)T/|C̃N |1/2. By the same perturbation argument, there is a Θ(1) gap between
the largest and second largest eigenvalue of A|eCN

, and 〈u0, u〉 ≥ N−c. It follows by a
standard argument that the output u∗∗ of the power method is an approximation to the
leading eigenvector u with a fixed error ‖u−u∗∗‖ ≤ δ/10. This implies that ‖u∗∗−v‖ ≤ 2δ,
by the triangle inequality. Let u⊥ (u‖) denote the projection of u∗∗ orthogonal to (resp.
onto) v. Thus we have ‖u⊥‖2

2 ≤ 4δ2. It follows that at most 36δ2|C̃N ∩ CN | entries in
u⊥ have magnitude exceeding (1/3)|C̃N ∪ CN |−1/2. Notice that u‖ = u∗∗ − u⊥ and u‖ is
a multiple of v. Consequently, we can assume BN is selected using u‖, instead of v. This
observation along with the bound above guarantees that at most 36δ2|C̃N ∩CN | entries are
misclassified, i.e.

|BN ∩ CN | ≥ (1− 36δ2)|C̃N ∩ CN | (3.30)
≥ (1− δ)(1− ε)|CN |. (3.31)

Here we assume δ ≤ 1/36.
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The above argument proves that the desired result for any fixed set C̃N independent of
A with a probability at least 1−2(5ξ)Ne−Nξ/2 where ξ = δ2/32ρε, for a universal constant
c and N large enough. In order to extend it to all sets C̃N (possibly dependent on the
matrix A), we can take a union bound over all possible choices of C̃N and obtain the
required result. For all N large enough, the number of choices satisfying the conditions of
Lemma 2.4 is bounded by:

#N(ε) ≤ 2eN(ε−ε log ε).

Choosing δ = ε1/4, it follows from the union bound that for some ε small enough, we have
that Eq. (3.31) holds with probability at least 1 − 4e−Nυ′ where υ′(ρ, ε) → ∞ as ε → 0.
Recall that the score ζBN

ρ̄ (i) for a vertex i is given by:

ζBN
ρ̄ (i) =

1
|CN |

∑
j∈BN

WijI{|Wij |≤ρ̄}

=
1

|CN |
∑

j∈CN

W ′
ij +

1
|CN |

 ∑
j∈BN\CN

W ′
ij −

∑
j∈CN\BN

W ′
ij

 ,

where W ′
ij = WijI{|Wij |≤ρ̄}. The truncated variables are subgaussian with the parameters

λ′`, ρ
′ for ` = 0, 1 as according Wij ∼ Q0, Q1. (Here λ′` denote the means after truncation)

Also, for ρ̄ large enough, we may take

λ′1 ≥
7
8
λ ,

λ′0 ≤
1
8
λ ,

ρ′ ≤ 2ρ.

It follows that since the sum
(∑

j∈CN
W ′

ij

)
/|CN | is subgaussian with parameters λ′`, ρ/|CN |

the following holds with high probability:

ζBN
ρ̄ (i) ≥ 3

4
λ− 2ρ̄(δ + ε) if i ∈ CN

ζBN
ρ̄ (i) ≤ 1

4
λ+ 2ρ̄(δ + ε) otherwise.

Choosing ε ≤ (λ/20ρ̄)4 yields the desired result.

4 The sparse graph case: Algorithm and proof of Theorem
2

In this section we consider the general hidden set problem on locally tree-like graphs, as
defined in the introduction. We will introduce the reconstruction algorithm and the basic
idea of its analysis. A formal proof of Theorem 2 will be presented in Section 5 and builds
on these ideas.

Throughout this section we consider a sequence of locally tree-like graphs {GN}N≥1,
GN = ([N ], EN ), indexed by the number of vertices N . For notational simplicity, we shall
assume that these graphs are (∆ + 1)-regular, although most of the ideas can be easily

25



generalized. We shall further associate to each vertex i a binary variable Xi, with Xi = 1 if
i ∈ CN and Xi = 0 otherwise. We write X = (Xi)i∈[N ] for the vector of these variables. It
is mathematically convenient to work with a slightly different model for the vertex labels
Xi: we will assume that the Xi are i.i.d. such that:

P(Xi = 1) =
κ√
∆

(
1 +

κ√
∆

)−1

.

For convenience of exposition, we also define:

κ̃(∆) ≡ κ

(
1 +

κ√
∆

)−1

.

Notice that this leads to a set CN = {i ∈ [N ] : Xi = 1} that has a random size which
concentrates sharply around Nκ̃/

√
∆. This is a slightly different model from what we

consider earlier: CN is uniformly random and of a fixed size. However, if we condition on
the size |CN |, the i.i.d. model reduces to the earlier model. We prove in Appendix B.3, that
the results of the i.i.d. model still hold for the earlier model. In view of this, throughout
this section we will stick to the i.i.d model.

In order to motivate the algorithm, consider the conditional distribution of W given
X, and assume for notational simplicity that Q0, Q1 are discrete distributions. We then
have P(W |X = x) =

∏
(i,j)∈EN

Qxixj (Wij). Here the subscript xixj means the product of
xi and xj . The posterior distribution of x is therefore a Markov random field (pairwise
graphical model) on GN :

P(X = x|W ) =
1

Z(W )

∏
(i,j)∈EN

Qxixj (Wij)
∏

i∈[N ]

( κ̃√
∆

)xi
(
1− κ̃√

∆

)1−xi

.

Here Z(W ) is an appropriate normalization. Belief propagation (BP) is a heuristic method
for estimating the marginal distribution of this posterior, see [WJ08, MM09, KF09] for
introductions from several points of view. For the sake of simplicity, we shall describe the
algorithm for the case Q1 = δ+1, Q0 = (1/2)δ+1 + (1/2)δ−1, whence Wij ∈ {+1,−1}. At
each iteration t, the algorithm updates ‘messages’ γt

i→j , γ
t
j→i ∈ R+, for each (i, j) ∈ EN .

As formally clarified below, these messages correspond to ‘odds ratios’ for vertex i to be
in the hidden set.

Starting from γ0
i→j = 1 for all i, j, messages are updated as follows:

γt+1
i→j = κ

∏
`∈∂i\j

(
1 + (1 +Wi,`)γt

`→i/
√

∆
1 + γt

`→i/
√

∆

)
. (4.1)

where ∂i denotes the set of neighbors of i in GN . We further compute the vertex quantities
γt

i as

γt+1
i = κ̃

∏
`∈∂i

(
1 + (1 +Wi,`)γt

`→i/
√

∆
1 + γt

`→i/
√

∆

)
. (4.2)

Note that γt
i is a function of the (labeled) neighborhood BallGN

(i; t). The nature of this
function is clarified by the next result, that is an example of a standard result in the
literature on belief propagation [WJ08, MM09, KF09].
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Proposition 4.1. Let WBallGN
(i;t) be the set of edge labels in the subgraph BallGN

(i; t). If
BallGN

(i; t) is a tree, then

P(Xi = 1|WBallGN
(i;t))

P(Xi = 0|WBallGN
(i;t))

=
γt

i√
∆
.

Given this result, we can attempt to estimate CN on locally tree-like graphs by running
BP for t iterations and subsequently thresholding the resulting odds-ratios. In other words
we let

ĈN ≡
{
i ∈ [N ] : γt

i ≥
√

∆
}
. (4.3)

By Proposition 4.1, this corresponds to maximizing the posterior probability P(Xi =
xi|WBallGN

(i;t)) for all vertices i such that BallGN
(i; t) is a tree. This in turn minimizes

the misclassification rate P(i ∈ CN ; i 6∈ ĈN ) + P(i ∈ ĈN ; i 6∈ CN ). The resulting error rate
is (

1− κ̃√
∆

)
P
(
γt

i ≥
√

∆
∣∣Xi = 0

)
+

κ̃√
∆

P
(
γt

i <
√

∆
∣∣Xi = 1

)
. (4.4)

In order to characterize this misclassification rate, we let T̃ree(t) denote the regular
t-generations with degree (∆ + 1) at each vertex except the leaves, rooted at vertex ◦
and labeled as follows. Each vertex i is labeled with Xi ∈ {0, 1} independently with
P(Xi = 1) = κ̃/

√
∆. Each edge (i, j) has label an independent Wij ∼ Q1 if Xi = Xj = 1

and Wij ∼ Q0 otherwise.
Let γ̃t(x◦) a random variable distributed as the odds ratio for X◦ = 1 on T̃ree(t) when

the true root value is x◦

γ̃t(x◦) ≡
√

∆
P(X◦ = 1|WeTree(t)

)

P(X◦ = 0|WeTree(t)
)
, WeTree(t)

∼ P(WeTree(t)
= · |X◦ = x◦) . (4.5)

The following characterization is a direct consequence of the fact Proposition 4.1 and the
fact that GN is locally tree-like. For completeness, we provide a proof in Appendix B.2

Proposition 4.2. Let ĈN be the estimated hidden set for the BP rule (4.3) after t itera-
tions. We then have

lim
N→∞

1
N

E[|CN4ĈN |] =
(
1− κ̃√

∆

)
P
(
γ̃t(0) ≥

√
∆
)

+
κ̃√
∆

P
(
γ̃t(1) <

√
∆
)
.

Further, if ĈN is estimated by any t-local algorithm, then lim infN→∞N−1 E[|CN4ĈN |] is
at least as large as the right-hand side.

We have therefore reduced the proof of Theorem 2 to controlling the distribution of
the random variables γ̃t(0), γ̃t(1). These can be characterized by a recursion over t. For κ
small we have the following.

Lemma 4.3. Assume κ < 1/
√
e. Then there exists constants γ∗ < ∞, δ∗ = δ∗(κ) and

∆∗ = ∆∗(κ) <∞ such that, for all ∆ > ∆∗(κ) and all t ≥ 0, we have

P(γ̃t(1) ≤ 5γ∗) ≥
3
4
.
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For large κ, we have instead the following.

Lemma 4.4. Assume κ > 1/
√
e. Then there exists c∗ = c∗(κ) > 0 ∆∗ = ∆∗(κ) < ∞,

t∗ = t∗(κ,∆) <∞ such that, for all ∆ > ∆∗(κ) we have(
1− κ̃√

∆

)
P
(
γ̃t(0) ≥

√
∆
)

+
κ̃√
∆

P
(
γ̃t(1) <

√
∆
)
≤ e−c∗

√
∆ .

Lemma 4.3 and Proposition 4.2 together imply one part of Theorem 2. Indeed, for ∆
large enough, we have that the misclassification error is Ω(N/

√
∆), which is the same order

as choosing a random subset of size κ̃N/
√

∆. Similarly, Lemma 4.4 in conjunction with
Proposition 4.2 yields the second half of Theorem 2.

5 Proof of Lemma 4.3 and 4.4

In this section we prove Lemma 4.3 and 4.4 that are the key technical results leading to
Theorem 2. We start by establishing some facts that are useful in both cases and then pass
to the proofs of the two lemmas.

5.1 Setup: Recursive construction of γ̃t(0), γ̃t(1)

As per Proposition 4.1, the likelihood ratio γ̃t(x◦) can be computed by applying the BP
recursion on the tree T̃ree(t). In order to set up this recursion, let Tree(t) denote the
t-generation tree, with root of degree ∆, and other non-leaf vertices of degree ∆ + 1. The
tree Tree(t) carries labels xi, Wij in the same fashion as T̃ree(t). Thus, Tree(t) differs from
T̃ree(t) only in the root degree. We then let

γt(x◦) ≡
√

∆
P(X◦ = 1|WTree(t))
P(X◦ = 0|WTree(t))

, WTree(t) ∼ P(WTree(t) = · |X◦ = x◦) . (5.1)

It is then easy to obtain the distributional recursion (here and below d= indicates equality
in distribution)

γt+1(0) d= κ

∆∏
`=1

(
1 + (1 +At

`)γ
t
`(x`)/

√
∆

1 + γt
`(x`)/

√
∆

)
, (5.2)

γt+1(1) d= κ

∆∏
`=1

(
1 + (1 + Ãt

`)γ
t
`(x`)/

√
∆

1 + γt
`(x`)/

√
∆

)
. (5.3)

This recursion is initialized with γ0(0) = γ0(1) = κ. Here γt
`(0), γt

`(1), ` ∈ [∆] are ∆ i.i.d.
copies of γt(0), γt(1), At

i, i ∈ [∆], are i.i.d. uniform in {±1}, xi, i ∈ [∆] are i.i.d. Bernoulli
with P(xi = 1) = κ̃/

√
∆. Finally Ãt

i = At
i if xi = 0 and Ãt

i = 1 if xi = 1.
The distribution of γ̃t(0), γ̃t(1) can then be obtained from the one of γt(0), γt(1) as

follows:

γ̃t+1(0) d= κ

∆+1∏
`=1

(
1 + (1 +At

`)γ
t
`(x`)/

√
∆

1 + γt
`(x`)/

√
∆

)
, (5.4)

γ̃t+1(1) d= κ

∆+1∏
`=1

(
1 + (1 + Ãt

`)γ
t
`(x`)/

√
∆

1 + γt
`(x`)/

√
∆

)
. (5.5)
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5.2 Useful estimates

A first useful fact is the following relation between the moments of γt(0) and γt(1).

Lemma 5.1. Let γ(0), γ(1), γ̃(0), γ̃(1) be defined as in Eqs. (5.2), (5.3), (5.4) and (5.5).
Then, for each positive integer a we have:

E
[
(γt(0))a

]
= κE

[
(γt(1))a−1

]
E
[
(γ̃t(0))a

]
= κE

[
(γ̃t(1))a−1

]
.

Proof. It suffices to show that:

dPγt(1)

dPγt(0)
(γ) =

γt

κ
,

where the left-hand side denotes the Radon-Nikodym derivative of Pγt(1) with respect to
Pγt(0). Let νt denote the posterior probability of x◦ = 0 given the labels on Tree(t). Let
νt(x◦) be distributed as νt conditioned on the event X◦ = x◦ for x◦ = 0, 1. In other words

νt ≡ P(X◦ = 1|WTree(t)) ,

νt(x◦) ≡ P(X◦ = 1|WTree(t)) , WTree(t) ∼ P(WTree(t) = · |X◦ = x◦) .

By Bayes rule we then have:

dPνt(0)

dPνt
=

νt

1− κ̃/
√

∆
,

dPνt(1)

dPνt
=

1− νt

κ̃/
√

∆
.

Using this and the fact that νt = (1 + γt/
√

∆)−1 by Eq. (5.1), we get

dPνt(0)

dPνt
=

1(
1 + γt/

√
∆
)

(1− κ/
√

∆)
,

dPνt(1)

dPνt
=

γt/
√

∆(
1 + γt/

√
∆
)
κ̃/
√

∆
.

It follows from this and that the mapping from νt to the likelihood γ is bijective and Borel
that:

dPγt(0)

dPγt(1)
= γt

(
κ̃

1− κ̃/
√

∆

)−1

=
γt

κ
.

Here the last equality follows from the definition of κ̃. A similar argument yields the same
result for γ̃t(0) and γ̃(1).

Our next result is a general recursive upper bound on the moments of γt(1).
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Lemma 5.2. Consider random variables γt(0), γt(1), γ̃t(0), γ̃t(1) that satisfy the distribu-
tional recursions in Eqs. (5.2), (5.3), (5.4) and (5.5). Then we have that, for each t ≥ 0:

E
[
γt+1(1)

]
≤ κ exp

(
κE[γt(1)]

)
,

E
[
γt+1(1)2

]
≤ κ2 exp

(
3κE[γt(1)]

)
,

E
[
γt+1(1)3

]
≤ κ3 exp

(
10κE[γt(1)]

)
.

Moreover, we also have:

E
[
γ̃t+1(1)

]
≤ κ exp

(
κE[γt(1)]

)(
1 +

E[γt(1)
∆

)
,

E
[
γ̃t+1(1)2

]
≤ κ2 exp

(
3κE[γt(1)]

)(
1 +

3E[γt(1)
∆

)
,

E
[
γ̃t+1(1)3

]
≤ κ3 exp

(
10κE[γt(1)]

)(
1 +

10E[γt(1)
∆

)
.

Proof. Consider the first moment E[γt+1(1)]. By taking expectation of Eq. (5.3) over
{A`, x`}1≤`≤∆, we get

E
[
γt+1(1)|{γt

`}1≤`≤∆

]
= κ

∆∏
`=1

[(
1− κ̃√

∆

)
+

κ̃√
∆

1 + 2γt
`(1)/

√
∆

1 + γt
`(1)/

√
∆

]

= κ

∆∏
`=1

[
1 +

κ̃

∆
γt

`(1)
1 + γt

`(1)/
√

∆

]

≤ κ

∆∏
`=1

[
1 +

κ

∆
γt

`(1)
]
.

The last inequality uses the non-negativity of γt(1) and that κ > κ̃. Taking expectation
over {γt

`}1≤`≤∆, and using the inequality (1 + x) ≤ ex, we get

E[γt+1(1)] ≤ κ exp
(
κE[γt(1)]

)
,

The claim for E[γ̃t+1(1)] follows from the same argument, except we include ∆ + 1 factors
above and retain only the last.

Next take the second moment E[γt+1(1)]. Using Eq. (5.3) and proceeding as above we
get:

30



E[γt+1(1)2] = κ2 E

[
∆∏

`=1

(
1 +

Ã`γ
t
`(x`)/

√
∆

1 + γt
`(x`)/

√
∆

)2
]

= κ2

[
1 +

(
1− κ̃√

∆

) 1
∆

E
[( γt(0)2

1 + γt(0)/
√

∆

)2
]

+
κ̃√
∆

E

(
2γt(1)

√
∆ + 3γt(1)2/∆

(1 + γt(1)/
√

∆)2

)]∆

≤ κ2

[
1 +

1
∆

E[(γt(0))2] +
κ

∆
E

(
2γt(1) + 4γt(1)2/

√
∆ + 2γt(1)3/∆3/2

(1 + γt(1)/
√

∆)2

)]∆

≤ κ2

(
1 +

1
∆

E[γt(0)2] +
2κ
∆

E[γt(1)]
)∆

≤ κ2 exp
[
E(γt(0)2) + 2κE(γt(1))

]
≤ κ2 exp

[
3κE(γt(1))

]
.

Consider, now, the third moment of γt+1(1). Proceeding in the same fashion as above we
obtain that:

E
[
γt+1(1)3

]
= κ3 E

∆∏
`=1

(
1 +

Ã`γ
t(x`)/

√
∆

1 + γt(x`)/
√

∆

)3

≤ κ3

(
1 +

3κ̃
∆

E
[
γt(1)

]
+

3
∆

E
[
(γt(0))2

]
+

κ̃√
∆

E

(
3γt(1)2/∆ + 4γt(1)3/∆3/2

(1 + γt(1)/
√

∆)3

))∆

.

Since (3z2 + 4z3)/(1 + z)3 ≤ 4z when z ≥ 0, and that κ > κ̃, we can bound the last term
above to get:

E
[
γt+1(1)3

]
≤ κ3

(
1 +

3
∆

E
[
γt(0)2

]
+ 7

κ

∆
E
[
γt(1)

])∆

≤ κ3 exp
(
3E[γt(0)2] + 7κE[γt(1)]

)
≤ κ3 exp

(
10κE[γt(1)]

)
.

The bound for the third moment of γ̃t+1(1) follows from the same argument with the
inclusion of the (∆ + 1)th factor.

Lemma 5.3. Consider γt(0), γt(1), γ̃t(0), γ̃t(1) satisfying the recursions Eqs. (5.2), (5.3),
(5.4) and (5.5). Also let x be Bernoulli with parameter κ̃/

√
∆ and A and Ã be defined like
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At
` and Ãt

` as in Eqs. (5.2), (5.3). Then we have that, for each t ≥ 0 and m ∈ {1, 2, 3}:

E

[ ∣∣∣∣∣log

(
1 +

Aγt(x)/
√

∆
1 + γt(x)

√
∆

)∣∣∣∣∣
m ]

≤ 2 E[γt(x)m]
∆m/2

,

E

[ ∣∣∣∣∣log

(
1 +

Ãγt(x)/
√

∆
1 + γt(x)

√
∆

)∣∣∣∣∣
m ]

≤ 2 E[γt(x)m]
∆m/2

.

Proof. Consider the first claim. We have:

E

[ ∣∣∣∣∣log

(
1 +

Aγt(x)/
√

∆
1 + γt(x)

√
∆

)∣∣∣∣∣
3 ]

= E

[
1
2

∣∣∣∣∣log

(
1− γt(x)/

√
∆

1 + γt(x)/
√

∆

)∣∣∣∣∣
m

+
1
2

∣∣∣∣∣log

(
1 +

γt(x)/
√

∆
1 + γt(x)/

√
∆

)∣∣∣∣∣
m ]

.

Bounding the first term we get:

E

[ ∣∣∣∣∣log

(
1− γt(x)/

√
∆

1 + γt(x)∆

)∣∣∣∣∣
m ]

=
∫ ∞

0
xP

(
log

(
1− γt(x)

√
∆

1 + γt(x)/
√

∆

)
≤ −x1/m

)
dx

≤
∫ ∞

0
xP
(
γt(x)/

√
∆ ≥ ex

1/m − 1
)

dx

≤
E
[
γt(x)m

]
∆m/2

∫ ∞

0

x

(ex1/m − 1)m
dx

≤
3 E
[
γt(x)m

]
∆m/2

.

For the second term, using log(1 + z) ≤ z for z ≥ 0 and the positivity of γt(x):

E

[ ∣∣∣∣∣log

(
1 +

γt(x)/
√

∆
1 + γt(x)/

√
∆

)∣∣∣∣∣
m ]

≤
E
[
γt(x)m

]
∆m/2

.

The combination of these yields the first claim. For the second claim, we write:

E

[ ∣∣∣∣∣log

(
1 +

Ãγt(x)/
√

∆
1 + γt(x)

√
∆

)∣∣∣∣∣
m ]

≤
(

1− κ̃√
∆

)
E

[ ∣∣∣∣∣log

(
1 +

Aγt(0)/
√

∆
1 + γt(0)

√
∆

)∣∣∣∣∣
m ]

+
κ√
∆

E

[ ∣∣∣∣∣log

(
1 +

γt(1)/
√

∆
1 + γt(1)

√
∆

)∣∣∣∣∣
m ]

≤
(

1− κ̃√
∆

)
2 E[γt(0)m]

∆m/2
+

κ̃√
∆

E[γt(1)m]
∆m/2

≤ 2 E[γt(x)m]
∆m/2

.

Here the penultimate inequality follows in the same fashion as for the first claim.
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5.3 Proof of Lemma 4.3

For κ < 1/
√
e, the recursive bounds in Eq. (5.2) yield bounds on the first three moments

of γt(1) that are uniform in t. Precisely, we have the following:

Lemma 5.4. For κ < 1/
√
e, let γ∗ = γ?(κ) be the smallest positive solution of the equation

γ = κ eκγ .

Then we have, for all t ≥ 0:

Eγt(1) ≤ γ∗ , (5.6)

E(γt(1)2) ≤ γ3
∗
κ
, (5.7)

E(γt(1)3) ≤ γ10
∗
κ7

. (5.8)

Moreover, we have for all t ≥ 0:

Eγ̃t(1) ≤ γ∗

(
1 +

κγ∗
∆

)
, (5.9)

E(γ̃t(1)2) ≤ γ3
∗
κ

(
1 +

3κγ∗
∆

)
, (5.10)

E(γ̃t(1)3) ≤ γ10
∗
κ7

(
1 +

10κγ∗
∆

)
.. (5.11)

Proof. We need only prove Eq. (5.6) since the rest follow trivially from it and Lemma 5.2.
The claim of Eq. (5.6) follows from induction and Lemma 5.2 since E[γ0(1)] = κ < κ̃ ≤ γ∗,
and noting that, for γ < γ∗, κ̃ exp(κ̃ γ) < γ∗.

The following is a simple consequence of the central limit theorem.

Lemma 5.5. For any a < b ∈ R, σ2 > 0, ρ < ∞, there exists n0 = n0(a, b, σ2, ρ) such
that the following holds for all n ≥ n0. Let {Wi}1≤i≤n be i.i.d. random variables, with
E{W1} ≥ a/n, Var(W1) ≥ σ2/n and E{|W1|3} ≤ ρ/n3/2. Then

P
{ n∑

i=1

Wi ≥ b
}
≥ 1

2
Φ
(
− b− a

σ

)
.

Proof. Let a0 = nE{W2} and σ2
0 ≡ nVar(W1). By the Berry-Esseen central limit theorem,

we have

P
{ n∑

i=1

Wi ≥ b
}
≥ Φ

(
− b− a0

σ0

)
− ρ

σ3
0

√
n

≥ Φ
(
− b− a

σ

)
− ρ

σ3
√
n

The claim follows by taking n0 ≥ ρ2/[σ3Φ(−u)]2 with u ≡ (b− a)/σ.

We finally prove a statement that is stronger than Lemma 4.3, since it also controls the
distribution of γ̃t(0).
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Proposition 5.6. Assume κ < 1/
√
e and let γ∗ be defined as per Lemma 5.4. Then there

exists ∆∗ = ∆∗(κ), δ∗ = δ∗(κ) > 0 such that, for all ∆ > ∆∗(κ) and all t ≥ 0, we have:

P(γ̃t(0) ≥ 5γ∗) ≥ δ∗,

P(γ̃t(1) ≤ 5γ∗) ≥
3
4
.

where δ∗ is given by:

δ∗ =
1
2
Φ
(

8
2κ− log(5γ∗/κ)

(κ3/γ∗)1/2

)
.

where Φ( · ) is the cumulative distribution function of the standard normal.

Proof. The second bound follows from Markov inequality and Lemma 5.4 for large enough
∆. As for the first one, we have using Γt(0) = log γ̃t(0):

Γt+1(0) = log κ+
∆+1∑
`=1

log

(
1 +

A`γ
t
`(x`)/

√
∆

1 + γt(x`)/
√

∆

)
,

It follows from Lemma 5.3 and Lemma 5.4 that:

E

[
log

(
1 +

A`γ
t
`(x`)/

√
∆

1 + γt(x`)/
√

∆

)]
≥ − 2κ√

∆
.

We now lower bound the variance of each summand using the conditional variance given
γt(x). Since A ∈ {±1} are independent of γt(x) and uniform, we have:

Var

[
log

(
1 +

A`γ
t
`(x`)/

√
∆

1 + γt(x`)/
√

∆

)]
≥ E

[
Var

(
log

(
1 +

A`γ
t
`(x`)/

√
∆

1 + γt(x`)/
√

∆

)∣∣∣∣∣γt(x)

)]

=
1
4

E

[(
log
(

1 +
2γt(x)√

∆

))2
]

≥ 1
4

(
log
(

1 +
κ√
∆

))2

P(γt(x) ≥ κ/2).

We have, using Lemma 5.4 that:

E[γt(x)] ≥ κ

E[γt(x)2] ≤ 2γ∗κ.

Using the above and the Paley-Zygmund inequality, we get:

Var

[
log

(
1 +

A`γ
t
`(x`)/

√
∆

1 + γt(x`)/
√

∆

)]
≥ 1

32γ∗

[
log
(

1 +
κ√
∆

)]2

≥ κ3

64γ∗∆
,

for ∆ large enough. Now, employing Lemma 5.5 we get:

P(γ̃t(0) ≥ 5γ∗) ≥
1
2
Φ
(
−8

log(5γ∗/κ)− 2κ
(κ3/γ∗)1/2

)
.
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5.4 Proof of Lemma 4.4

As discussed in Section 4, BP minimizes the misclassification error at vertex i among all
t-local algorithms provided BallGN

(i; t) is a tree. Equivalently it minimizes the misclassifi-
cation rate at the root of the regular tree T̃ree(t). We will prove Lemma 4.4 by proving that
there exists a local algorithm to estimate the root value on the tree Tree(t), for a suitable
choice of t with error rate exp(−Θ(

√
∆)). Note that since the labeled tree Tree(t) is a

subtree of T̃ree(t), the same algorithm is local on Tree(t). Formally we have the following.

Proposition 5.7. Assume κ > 1/
√
e. Then there exists c∗ = c∗(κ) > 0 ∆∗ = ∆∗(κ) <∞,

t∗ = t∗(κ,∆) < ∞ such that, for all ∆ > ∆∗(κ) we can construct a t∗-local decision rule
F : WTree(t∗) → {0, 1} satisfying

P(F(WTree(t∗)) 6= x◦|X◦ = x◦) ≤ e−c∗
√

∆ ,

for x◦ ∈ {0, 1}.

The rest of this section is devoted to the proof of this proposition.
The decision rule F is constructed as follows. We write t∗ = t∗,1 + t∗,2 with t∗,1 and t∗,2

to be chosen below, and decompose the tree Tree(t∗) into its first t∗,1 generations (that is
a copy of Tree(t∗,1)) and its last t∗,2 generations (which consist of ∆t∗,1 independent copies
of Tree(t∗,2)). We then run a first decision rule based on BP for the copies of Tree(t∗,2)
that correspond to the last t∗,2 generations. This yields decisions that have a small, but
independent of ∆, error probability on the nodes at generation t∗,1. We then refine these
decisions by running a different algorithm on the first t∗,1 generations.

Formally, Proposition 5.7 follows from the following two lemmas, that are proved next.
The first lemma provides the decision rule for the nodes at generation t∗,1, based on the
last t∗,2 generations.

Lemma 5.8. Assume κ > 1/
√
e and let ε > 0 be arbitrary. Then there exists ∆∗ =

∆∗(κ, ε) <∞, t∗,2 = t∗,2(κ,∆) <∞ such that, for all ∆ > ∆∗(κ, ε) there exists a t∗,2-local
decision rule F2 : WTree(t∗,2) 7→ F2(WTree(t∗,2)) ∈ {0, 1} such that

P(F2(WTree(t∗,2)) 6= x◦|X◦ = x◦) ≤ ε ,

for x◦ ∈ {0, 1}.

The second lemma yields a decision rule for the root, given information on the first
t∗,1 generations, as well as decisions on the nodes at generation t∗,1. In order to state the
theorem, we denote by Le(t) the set of nodes at generation t. For ε = (ε(0), ε(1)), we
also let YLe(t∗,1)(ε) = (Yi(ε))i∈Le(t∗,1) denote a collection of random variables with values in
{0, 1} that are independent given the node labels XLe(t∗,1) = (Xi)i∈Le(t∗,1) and such that,
for all i,

P{Yi(ε) 6= Xi|Xi = x} ≤ ε(x) .

Lemma 5.9. Fix κ ∈ (0,∞). There exists ∆∗(κ) = ∆∗(κ) <∞, t∗,1 <∞, c∗(κ) > 0 and
ε∗(κ) > 0 such that. for all ∆ > ∆∗ there exists a t∗,1-local decision rule

F1 : (WTree(t∗,1), YLe(t∗,1)) 7→ F1(WTree(t∗,1)YLe(t∗,1)) ∈ {0, 1}

satisfying, for any ε ≤ ε∗:

P(F1(WTree(t∗,1)YLe(t∗,1)) 6= x◦|X◦ = x◦) ≤ e−c∗
√

∆ ,
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5.4.1 Proof of Lemma 5.8

The decision rule is constructed as follows. We run BP on the tree Tree(t∗,2) under consid-
eration, thus computing the likelihood ratio γt∗,2 at the root. We then set F2(WTree(t∗,2)) =
I(γt∗,2 ≥ eµ). Here µ is a threshold to be chosen below.

In order to analyze this rule, recall that γt(x◦) denotes a random variable whose dis-
tribution is the same as the conditional distribution of γt, given the true value of the root
X◦ = x◦. It is convenient to define

Γt(x) ≡ log γt(x)
κ̂ ≡ log κ.

As stated formally below, in the limit of large ∆, Γt(0) (Γt(1)) is asymptotically Gaussian
with mean µt(0) (resp. µt(1)) and variance σ2

t . The parameters µt(0), µt(1), σt are defined
by the recursion:

µt+1(0) = κ̂− 1
2
e2µt(0)+2σ2

t , (5.12)

µt+1(1) = κ̂+ κ eµt(1)+σ2
t /2 − 1

2
e2µt(0)+2σ2

t , (5.13)

σ2
t+1 = e2µt(0)+2σ2

t , . (5.14)

with initial conditions µ0(0) = µ0(1) = κ̂ and σ2
0 = 0. Formally, we have the following:

Proposition 5.10. Fix a time t > 0. Then the following limits hold as ∆ →∞:

Γt(0) d⇒µt(0) + σtZ

Γt(1) d⇒µt(1) + σtZ

where Z ∼ N(0, 1) and µt(0), µt(1), σt are defined by the state evolution recursions (5.12)
to (5.14).

Proof. We prove the claims by induction. We have for 1 ≤ i ≤ t− 1:

Γi+1(0) = κ̂+
∆∑

`=1

log

(
1 +

Ai
`γ

i
`(x`)/

√
∆

1 + γi
`(x`)/

√
∆

)
.

Considering the first moment, we have:

E
[
Γi+1(0)

]
= κ̂+ E

[
∆ log

(
1 +

Ai
`γ

i(x)/
√

∆
1 + γi(x)/

√
∆

)]

= κ̂+ E

[
∆
2

log

(
1 +

γi(x)/
√

∆
1 + γi(x)/

√
∆

)
+

∆
2

log

(
1− γi(x)/

√
∆

1 + γi(x)/
√

∆

)]
.

where we drop the subscript `. Expanding similarly using the distribution of x, we find
that the quantity inside the expectation converges pointwise as ∆ →∞ to:

−γi(0)2 = −e2Γi(0).
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Since E[γi(0)2] is bounded by Lemma 5.2 for fixed t, we have by dominated convergence
and the induction hypothesis that:

lim
∆→∞

E
[
Γi+1(0)

]
= κ̂− 1

2
e2µi(0)+2σ2

i

= µi+1(0).

Similarly, for the variance we have:

Var(Γi+1(0)) = Var

(
√

∆ log

(
1 +

Aiγi(x)/
√

∆
1 + γi(x)/

√
∆

))
.

Using Var(X) = E(X2) − (EX)2, we find that the right hand side converges pointwise to
γi(0)2 = e2Γ

i(0), yielding as before:

lim
∆→∞

Var(Γi+1(0)) = e2µi(0)+2σ2
i

= σ2
i+1.

It follows from the Lindeberg central limit theorem that Γi+1 converges in distribution to
µi+1(0) + σi+1Z where Z ∼ N(0, 1). For the base case, Γ0(0) is initialized with the value
log κ = κ̂. This is trivially the (degenerate) Gaussian given by µ0(0)+σ0Z since µ0(0) = κ̂
and σ0 = 0.

Now consider the case of Γi+1(1). We have as before:

Γi+1(1) = κ̂+
∆∑

`=1

log

(
1 +

Ãi
`γ

i
`(x`)/

√
∆

1 + γi
`(x`)/

√
∆

)
.

Computing the first moment:

E[Γi+1(1)] = κ̂+ ∆ E

[
log

(
1 +

Ãiγi(x)/
√

∆
1 + γi(x)/

√
∆

)]

= κ̂+ ∆ E

[
κ̃√
∆

log

(
1 +

γi(1)/
√

∆
1 + γi(1)/

√
∆

)

+
(

1− κ̃√
∆

)
log

(
1 +

Aiγi(0)/
√

∆
1 + γi(0)/

√
∆

)]
.

The second term can be handled as before. The first term in the expectation converges
pointwise to κγi(1) = κeΓ

i(1). Thus we get by dominated convergence as before that:

lim
∆→∞

E[Γi+1(1)] = κ̂+ κ eµi(1)+σ2
i /2 − 1

2
e2µi(0)+2σ2

i

= µi+1(0) + κ eµi(1)+σ2
i /2

= µi+1(1).

For the variance:

Var
(
Γi+1(1)

)
= ∆ Var

(
log

(
1 +

Ãiγi(x)/
√

∆
1 + γi(x)/

√
∆

))
.
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Dealing with each term of the variance computation separately we get:

∆ E

[
log2

(
1 +

Ãiγi(x)/
√

∆
1 + γi(x)/

√
∆

)]
= ∆ E

[
κ̃√
∆

log2

(
1 +

γi(1)/
√

∆
1 + γi(1)/

√
∆

)

+
(

1− κ̃√
∆

)
log2

(
1 +

Aiγi(0)/
√

∆
1 + γi(0)/

√
∆

)]
,

Asymptotically in ∆, the contribution of first term vanishes, while that of the other can
be computed, using dominated convergence as in the case of Γi+1(0), as:

lim
∆→∞

E
[
e2Γ

i(0)
]

= e2µi(0)+2σ2
i

= σ2
i+1

where we use the induction hypothesis. Similarly expanding:

E

[
√

∆ log

(
1 +

Ãiγi(x)/
√

∆
1 + γi(x)/

√
∆

)]
=
√

∆E
[
κ̃√
∆

log

(
1 +

γi(1)/
√

∆
1 + γi(1)/

√
∆

)

+
(

1− κ̃√
∆

)
log

(
1 +

Aiγi(0)/
√

∆
1 + γi(0)/

√
∆

)]
.

In this case, the contribution of both terms goes to zero, hence asymptotically in ∆ the
expectation above vanishes. It follows, using these computations and the Lindeberg central
limit theorem that Γi+1(1) converges in distribution to the limit random variable µi+1(1)+
σi+1Z where Z ∼ N(0, 1). The base case for Γi+1(1) is the same as that for Γi+1(0) since
they are initialized at the (common) value κ̂.

Using the last lemma we can estimate the probability of error that is achieved by
thresholding the likelihood ratios γt.

Corollary 5.11. Let γt be the likelihood ratio at the root of tree Tree(t). Define µt ≡
(µt(1) + µt(0))/2, and set F2,t(WTree(t)) = 1 if γt > eµt and F2,t(WTree(t)) = 0 otherwise.
Then, there exists ∆0(t) such that, for all ∆ > ∆0(t),

P(F2,t(WTree(t)) 6= x◦|X◦ = x◦) ≤ 2 Φ
(
− µt(1)− µt(0)

2σt

)
,

Proof. It is easy to see, from Eqs. (5.12) and (5.13) that µt(1) ≥ µt(0). By the last lemma,

lim
∆→∞

P(F2,t(WTree(t)) 6= x◦|X◦ = x◦) = Φ
(
− µt(1)− µt(0)

σt

)
,

and this in turn yields the claim.

Finally, we have the following simple calculus lemma, whose proof we omit.

Lemma 5.12. Let µt(0), µt(1), σt be defined as per Eqs. (5.12), (5.13), (5.14). If κ >
1/
√
e, then

lim
t→∞

µt(1)− µt(0)
σt

= ∞ .

Lemma 5.8 follows from combining this result with Corollary 5.11 and selecting t∗,2
so that Φ

(
− (µt(1) − µt(0))/σt

)
≤ ε/4 for t = t∗,2. Finally we let ∆∗ = ∆0(t∗,2) as per

Corollary 5.11.
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5.4.2 Proof of Lemma 5.9

We construct the decision rule F1 : (WTree(t∗,1), YLe(t∗,1)) 7→ F1(WTree(t∗,1)YLe(t∗,1)) ∈ {0, 1}
recursively as follows. For each vertex i ∈ Tree(t) we compute a decision mi ∈ {0, 1} based
on the set of descendants of i, do be denoted as D(i), as follows

mt+1
i =

{
1 if

∑
`∈D(i)Wi`m

t
` ≥

κ
2

√
∆

0 otherwise.
(5.15)

If i is a leaf, we let mi = Yi. Finally we take a decision on the basis of the value at the
root:

F1(WeTree(t)
, YLe(t)) = m◦ .

We recall that the Yi’s are conditionally independent given XLe(t). We assume that
P(Yi = 1|Xi = 0) = P(Yi = 0|Xi = 1) = ε, which does not entail any loss of generality
because it can always be achieved by degrading the decision rule F2. We define the following
quantities:

pt = P(F1(WeTree(t)
, YLe(t)) = 1|X◦ = 0) , (5.16)

qt = P(F1(WeTree(t)
, YLe(t)) = 1|Xi = 1). (5.17)

Note in particular that p0 = 1− q0 = ε.
Lemma 5.9 follows immediately from the following.

Lemma 5.13. Let pt and qt be defined as in Eqs. (5.16), (5.17). Then there exists ε∗ =
ε∗(κ) and t∗ = t∗(∆, κ) <∞, ∆∗ = ∆∗(κ) <∞, c∗ = c∗(κ) > 0 such that for ∆ ≥ ∆∗:

pt∗ ≤ 4 e−c∗
√

∆ (5.18)

1− qt∗ ≤ 4 e−c∗
√

∆. (5.19)

Proof. Throughout the proof, we use c1, c2, . . . to denote constants that can depend on κ
but not on ∆ or t. We first prove the following by induction:

pt+1 ≤ e−c1∆pt + e−c2∆3/2
+ e−c3/pt

1− qt+1 ≤ e−c1∆pt + e−c2∆3/2
+ e−c3/4pt .

We let Bin(n, p) denote the binomial distribution with parameters n, p. First, let D ∼
Bin(∆, κ̃/

√
∆) and, conditional on D:

Nt ∼ Bin(∆−D, pt)
Mt ∼ Bin(D, qt).

From the definition of pt, qt and Eq. (5.15) we observe that:

pt+1 = P

(
Mt+Nt∑

i=1

Wi ≥ κ
√

∆/2

)

qt+1 = P

(
Nt∑
i=1

Wi +Mt ≥ κ
√

∆/2

)
,
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where we let Wi ∈ {±1} are i.i.d and uniformly distributed.
Considering the pt recursion:

pt+1 ≤ P
(
Mt +Nt ≤

pt∆
2

)
+ P

pt∆/2∑
i=1

Wi ≥
κ
√

∆
2


≤ P

(
Nt ≤

pt∆
2

)
+ e−κ2/4pt

≤ P
(
Ñ ≤ pt∆

2

)
+ P

(
D ≥ ∆

4

)
+ e−κ2/4pt ,

where Ñ ∼ Bin(3∆/4, pt) and the penultimate inequality follows from the Chernoff bound
and positivity of Mt. Using standard Chernoff bounds, for ∆ ≥ 5 we get:

pt+1 ≤ e−3∆pt/128 + e−c1∆3/2
+ e−κ2/4pt ,

where c1 is a constant dependent only on κ. Bounding 1 − qt+1 in a similar fashion, we
obtain:

1− qt+1 = P

(
Nt∑
i=1

Wi +Mt ≤ κ
√

∆/2

)

≤ P

(
Nt∑
i=1

Wi ≤ −κ
√

∆/4

)
+ P

(
Mt ≤ 3κ

√
∆/4

)
.

We first consider the Mt term:

P
(
Mt ≤ 3κ

√
∆/4

)
≤ P

(
D ≤ 7κ

√
∆/8

)
+ P

(
M̃ ≥ κ

√
∆/8

)
,

where M̃ ∼ Bin(0, qt). Further, using Chernoff bounds we obtain that this term is less than
2e−κ

√
∆/128. The other term is handled similar to the pt recursion as:

P

(
Nt∑
i=1

Wi ≤ −κ
√

∆/4

)
≤ P

(
Nt ≤

pt∆
2

)
+ P

pt∆/2∑
i=1

Wi ≥ κ
√

∆/4


≤ P

(
Ñ ≤ pt∆

2

)
+ P

(
D ≥ ∆

4

)
+ e−κ2/16pt

≤ e−3∆pt/128 + e−c1∆3/2
+ e−κ2/16pt .

Consequently we obtain:

1− qt ≤ e−3∆pt/128 + e−c1∆3/2
+ e−κ2/16pt + 2e−κ

√
∆/128.

Simple calculus shows that, for all ∆ > ∆∗(κ) large enough, there exists ε∗, c0 depen-
dent on κ but independent of ∆ such that

e−3∆p/128 + e−c1∆3/2
+ e−κ2/16p < p

for all p ∈ [c0/
√

∆, ε∗]. Since p0 = ε ≤ ε∗, this implies that there exists t0 such that
pt0 ≤ c0/

√
∆. The claim follows by taking t∗ = t0 + 1 which yields that pt∗ = O(e−Θ(

√
∆)).

Further, observing that the error 1 − qt∗ has only an additional 2e−c3
√

∆ component, we
obtain a similar claim for 1− qt∗ .
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A Some tools in probability theory

This appendix contains some useful facts in probability theory.

Lemma A.1. Let h : R → R be a bounded function with first three derivatives uniformly
bounded. Let Xn,k be mutually independent random variables for 1 ≤ k ≤ n with zero mean
and variance vn,k. Define:

vn ≡
n∑

k=1

vn,k

δn(ε) ≡
n∑

k=1

E[X2
n,kI|Xn,k|≥ε]

Sn ≡
n∑

k=1

Xn,k.

Also let Gn = N(0, vn). Then, for every n and ε > 0:

|Eh(Sn)− Eh(Gn)| ≤
(
ε

6
+
√
ε2 + δn

2

)
vn‖h′′′‖∞ + δn‖h′′‖∞

Proof. The lemma is proved using a standard swapping trick. The proof can be found in
Amir Dembo’s lecture notes [Dem13].

Lemma A.2. Given a random variable X such that E(X) = µ. Suppose X satisfies:

E(eλX) ≤ eµλ+ρλ2/2,

for all λ > 0 and some constant ρ > 0. Then we have for all s > 0:

E(|X|s) ≤ 2s!e(s+λµ)/2λ−s,

where λ =
1
2ρ

(√
µ2 + 4sρ− µ

)
.

Further, if µ = 0, we have for t < 1/eρ:

E
(
etX

2
)
≤ 1

1− eρt

Proof. By an application of Markov inequality and the given condition on X:

P(X ≥ t) ≤ e−λtE(eλX)

≤ e−λt+µλ+ρλ2/2,
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for all λ > 0. By a symmetric argument:

P(X ≤ −t) ≤ eλt+µλ+ρλ2/2

By the standard integration formula we have:

E(|X|s) =
∫ ∞

0
sts−1P(|X| ≥ t) dt

=
∫ ∞

0
sts−1P(X ≥ t) dt+

∫ ∞

0
sts−1P(X ≤ −t) dt

≤ 2eµλ+ρλ2/2

∫ ∞

0
sts−1e−λt dt

= 2s! eµλ+ρλ2/2λ−s

Optimizing over λ yields the desired result.
If µ = 0, the optimization yields λ =

√
s/ρ. Using this, the Taylor expansion of

g(x) = ex
2

and monotone convergence we get:

E
(
etX

2
)

=
∞∑

k=0

tk

k!
E(X2k)

≤
∞∑

k=0

(eρt)k (2k)!
k!(2k)k

≤
∞∑

k=0

(eρt)k

=
1

1− eρt
.

Notice that here we remove the factor of 2 in the inequality, since this is not required for
even moments of X.

The following lemma is standard, see for instance [AKV02, Ver12].

Lemma A.3. Let M ∈ RN×N be a symmetric matrix with entries Mij (for i ≥ j) which
are centered subgaussian random variables of scale factor ρ. Then, uniformly in N :

P (‖M‖2 ≥ t) ≤ (5λ)Ne−N(λ−1),

where λ = t2/16Nρe and ‖M‖2 denotes the spectral norm (or largest singular value) of M .

Proof. Divide M into its upper and lower triangular portions Mu and M l so that M =
Mu + Ml. We deal with each separately. Let mi denote the ith row of M l. For a unit
vector x, since Mij are all independent and subgaussian with scale ρ, it is easy to see that
〈mj , x〉 are also subgaussian with the same scale. We now bound the square exponential
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moment of ‖M lx‖ as follows. For small enough c ≥ 0:

E
(
ec‖M

lx‖2
)

= E

 N∏
j=1

ec〈mj ,x〉2


=

N∏
j=1

E
(
ec〈mj ,x〉2

)
≤ (1− eρc)N . (A.1)

Using this, we get for any unit vector x:

P(‖M lx‖ ≥ t) ≤
(

t2

Nρe

)N

e−N(t2/Nρe−1),

where we used Markov inequality and Eq. (A.1) with an appropriate c. Let Υ be a maximal
1/2-net of the unit sphere. From a volume packing argument we have that |Υ| ≤ 5N . Then
from the fact that g(x) = M lx is ‖M l‖-Lipschitz in x:

P
(
‖M l‖2 ≥ t

)
≤ P

(
max
x∈Υ

‖M lx‖ ≥ t/2
)

≤ |Υ|P(‖M lx‖ ≥ t/2).

The same inequality holds for Mu. Now using the fact that ‖·‖2 is a convex function and
that Mu and M l are independent we get:

P (‖M‖2 ≥ t) ≤ P (‖Mu‖2 ≥ t/2) + P
(
‖M l‖2 ≥ t/2

)
≤ 2

(
5N

(
t2

16Nρe

)N

e−N(t2/16Nρe−1)

)
.

Substituting for λ yields the result.

B Additional Proofs

In this section we provide, for the sake of completeness, some additional proofs that are
known results. We begin with Proposition 1.1.

B.1 Proof of Proposition 1.1

We assume the set CN is generated as follows: let Xi ∈ {0, 1} be the label of the index
i ∈ [N ]. Then Xi are i.i.d Bernoulli with parameter κ/

√
N and the set CN = {i : Xi = 1}.

The model of choosing CN uniformly random of size κ
√
N is similar to this model and

asymptotically in N there is no difference. Notice that since eCN
= uCN

/N1/4, we have
that ‖eCN

‖2 concentrates sharply around κ and we are interested in the regime κ = Θ(1).
We begin with the first part of the proposition where κ = 1 + ε. Let WN = W/

√
N ,

ZN = Z/
√
N and eCN

= uCN
/N1/4. Since this normalization does not make a difference to

the eigenvectors of W and Z we obtain from the eigenvalue equation WNv1 = λ1v1 that:

eCN
〈eCN

, v1〉+ ZNv1 = λ1v1. (B.1)
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Multiplying by v1 on either side:

〈eCN
, v1〉2 = λ1 − 〈v1, ZNv1〉

≥ λ1 − ‖ZN‖2.

Since ZN = Z/
√
N is a standard Wigner matrix with subgaussian entries, [AKV02] yields

that ‖Z‖2 ≤ 2 + δ with probability at least C1e
−c1N for some constants C1(δ), c1(δ) > 0.

Further, by Theorem 2.7 of [KY11] we have that λ1 ≥ 2 + min(ε, ε2) with probability at
least 1−N−c2 log log N for some constant c2 and every N sufficiently large. It follows from
this and the union bound that for N large enough, we have:

〈eCN
, v1〉2 ≥ min(ε, ε2)/2,

with probability at least 1−N−c4 for some constant c4 > 0. The first claim then follows.
For the second claim, we start with the same eigenvalue equation (B.1). Multiplying on

either side by ϕ1, the eigenvector corresponding to the largest eigenvalue of ZN we obtain:

〈eCN
, v1〉〈eCN

, ϕ1〉+ θ1〈v1, ϕ1〉 = λ1〈v1, ϕ1〉 ,

where θ1 is the eigenvalue of ZN corresponding to ϕ1. With this and Cauchy-Schwartz we
obtain:

|〈eCN
, v1〉| ≤

|λ1 − θ1|
|〈ϕ1, eCN

〉|
.

Let φ = (logN)log log N . Then, using Theorem 2.7 of [KY11], for any δ > 0, there exists a
constant C1 such that |λ1 − θ1| ≤ N−1+δ with probability at least 1−N−c3 log log N .

Since ϕ1 is independent of eCN
, we observe that:

Ee

(
N∑

i=1

ϕi
1e

i
CN

)
= N−3/4(1− ε)

N∑
i=1

ϕi
1

Ee

(
N∑

i=1

(ϕi
1e

i
CN

)2
)

=
1− ε

N
,

where ϕi
1 (eiCN

) denotes the ith entry of ϕ1 (resp. eCN
) and Ee(·) is the expectation with

respect to eCN
holding ZN (hence ϕ1) constant. Using Theorem 2.5 of [KY11], it follows

that there exists constants c4, c5, c6, c7 such that the following two happen with probability
at least 1 −N−c4 log log N . Firstly, the first expectation above is at most (1 − ε)φc5N−7/4.
Secondly: [

Ee

(
N∑

i=1

(ϕi
1e

i
CN

)2
)]−1/2

max
i
|eiCN

ϕ1
i | ≤

(1− ε)φc7

N1/4
.

Now, using the Berry-Esseen central limit theorem for 〈ϕ1, eCN
〉 that:

P
(
|〈ϕ1, eCN

〉| ≤ c(N)1/2−δ
)
≤ 1
N δ

,

for an appropriate constant c = c(ε) and δ ∈ (0, 1/4). Using this and the earlier bound for
|λ1 − θ1| we obtain that:

|〈eCN
, v1〉| ≤ cN−1/2+3δ

with probability at least 1 − c′N−δ, for some c′ and sufficiently large N . The claim then
follows using the union bound and the same argument for the first ` eigenvectors.
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B.2 Proof of Proposition 4.2

For any fixed t, let E t
N denote the set of vertices in GN such that their t-neighborhoods are

not a tree, i.e.

E t
N = {i ∈ [N ] : BallGN

(i; t) is not a tree}.

For notational simplicity, we will omit the subscript GN in the neighborhood of i. The
relative size εtN = |E t

N |/N vanishes asymptotically in N since the sequence {GN}N≥1 is
locally tree-like. We let FBP (WBall(i;t)) denote the decision according to belief propagation
at the ith vertex.

From Proposition 4.1, Eqs. (4.1), (4.2), (4.5), (5.1) and induction, we observe that for
any i ∈ [N ]\E t

N :

P(Xi = 1|WBall(i;t))
P(Xi = 0|WBall(i;t))

d=
γ̃t(Xi)√

∆
.

We also have that:

|ĈN4CN | =
N∑

i=1

I(FBP (WBall(i;t)) 6= Xi).

Using both of these, the fact that εtN → 0 and the linearity of expectation, we have the
first claim:

lim
N→∞

E|ĈN4CN |
N

=
κ̃√
∆

P
(
γt(1) <

√
∆
)

+
(

1− κ̃√
∆

)
P
(
γt(0) ≥

√
∆
)
.

For any other decision rule F(WBall(i;t)), we have that:

E[|ĈN4CN |]
N

≥ (1− εtN )P(F(WeTree(t)
) 6= X◦)

≥ (1− εtN )P(FBP (WeTree(t)
) 6= X◦),

since BP computes the correct posterior marginal on the root of the tree T̃ree(t) and
maximizing the posterior marginal minimizes the misclassification error. The second claim
follows by taking the limits.

B.3 Equivalence of i.i.d and uniform set model

In Section 2 the hidden set CN was assumed to be uniformly random given its size. However,
in Section 4 we considered a slightly different model to choose CN , wherein Xi are i.i.d
Bernoulli random variables with parameter κ̃/

√
∆. This leads to a set CN = {i : Xi = 1}

that has a random size, sharply concentrated around Nκ̃/
√

∆. The uniform set model
can be obtained from the i.i.d model by simply conditioning on the size |CN |. In the
limit of large N it is well-known that these two models are “equivalent”. However, for
completeness, we provide a proof that the results of Proposition 4.2 do not change when
conditioned on the size |CN | =

∑N
i=1Xi.

E
[
|ĈN4CN |

∣∣∣∣ |CN | =
Nκ̃√

∆

]
=

N∑
i=1

P
(

F(WBall(i;t)) 6= Xi

∣∣∣∣ N∑
j=1

Xj =
Nκ̃√

∆

)
.
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Let S be the event {
∑N

i=1Xi = Nκ̃/
√

∆}. Notice that F(WBall(i;t)) is a function of
{Xj , j ∈ Ball(i; t)} which is a discrete vector of dimension Kt ≤ (∆ + 1)t+1. A straight-
forward direct calculation yields that (Xj , j ∈ Ball(i; t))|S converges in distribution to
(Xj , j ∈ Ball(i; t)) asymptotically in N . This implies WBall(i;t)|S converges in distribution
to WBall(i;t). Further, using the locally tree-like property of GN one obtains:

lim
N→∞

1
N

E
[
|ĈN4CN |

∣∣∣∣ |CN | =
Nκ̃√

∆

]
= P

(
F(WeTree(t)

) 6= X◦

)
,

as required.
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