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Abstract

Estimators computed from adaptively collected data do not behave like their non-1

adaptive brethren. Rather, the sequential dependence of the collection policy2

can lead to severe distributional biases that persist even in the infinite data limit.3

We develop a general method – W -decorrelation – for transforming the bias of4

adaptive linear regression estimators into variance. The method uses only coarse-5

grained information about the data collection policy and does not need access to6

propensity scores or exact knowledge of the policy. We bound the finite-sample bias7

and variance of the W -estimator and develop asymptotically correct confidence8

intervals based on a novel martingale central limit theorem. We then demonstrate9

the empirical benefits of the generic W -decorrelation procedure in two different10

adaptive data settings: the multi-armed bandit and the autoregressive time series.11

1 Introduction12

Consider a dataset of n sample points (yi,xi)i≤n where yi represents an observed outcome and13

xi ∈ Rp an associated vector of covariates. In the standard linear model, the outcomes and covariates14

are related through a parameter β:15

yi = 〈xi, β〉+ εi. (1)

In this model, the ‘noise’ term εi represents inherent variation in the sample, or the variation that is16

not captured in the model. Parametric models of the type (1) are a fundamental building block in17

many machine learning problems. A common additional assumption is that the covariate vector xi18

for a given datapoint i is independent of the other sample point outcomes (yj)j 6=i and the inherent19

variation (εj)j∈[n]. This paper is motivated by experiments where the sample (yi,xi)i≤n is not20

completely randomized but rather adaptively chosen. By adaptive, we mean that the choice of the data21

point (yi,xi) is guided from inferences on past data (yj ,xj)j<i. Consider the following sequential22

paradigms:23

1. Multi-armed bandits: This class of sequential decision making problems captures the24

classical ‘exploration versus exploitation’ tradeoff. At each time i, the experimenter chooses25

an ‘action’ xi from a set of available actions X and accrues a reward R(yi) where (yi,xi)26

follow the model (1). Here the experimenter must balance the conflicting goals of learning27

about the underlying model (i.e., β) for better future rewards, while still accruing reward in28

the current time step.29

2. Active learning: Acquiring labels yi is potentially costly, and the experimenter aims to30

learn with as few outcomes as possible. At time i, based on prior data (yj ,xj)j≤i−1 the31

experimenter chooses a new data point xi to label based on its value in learning.32

3. Time series analysis: Here, the data points (yi,xi) are naturally ordered in time, with33

(yi)i≤n denoting a time series and the covariates xi include observations from the prior time34

points.35
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Here, time induces a natural sequential dependence across the samples. In the first two instances, the36

actions or policy of the experimenter are responsible for creating such dependence. In the case of time37

series data, this dependence is endogenous and a consequence of the modeling. A common feature,38

however, is that the choice of the design or sequence (xi)i≤n is typically not made for inference39

on the model after the data collection is completed. This does not, of course, imply that accurate40

estimates on the parameters β cannot be made from the data. Indeed, it is often the case that the41

sample is informative enough to extract consistent estimators of the underlying parameters. Indeed,42

this is often crucial to the success of the experimenter’s policy. For instance, ‘regret’ in sequential43

decision-making or risk in active learning are intimately connected with the accurate estimation of44

the underlying parameters [Castro and Nowak, 2008, Audibert and Bubeck, 2009, Bubeck et al.,45

2012, Rusmevichientong and Tsitsiklis, 2010] . Our motivation is the natural follow-up question of46

accurate ex post inference in the standard statistical sense:47

Can adaptive data be used to compute accurate confidence regions and p-values?48

As we will see, the key challenge is that even in the simple linear model of (1), the distribution of49

classical estimators can differ from the predicted central limit behavior of non-adaptive designs. In50

this context we make the following contributions:51

• Decorrelated estimators: We present a general method to decorrelate arbitrary estimators52

β̂(y,Xn) constructed from the data. This construction admits a simple decomposition53

into a ‘bias’ and ‘variance’ term. In comparison with competing methods, like propensity54

weighting, our proposal requires little explicit information about the data-collection policy.55

• Bias and variance control: Under a natural exploration condition on the data collection56

policy, we establish that the bias and variance can be controlled at nearly optimal levels. In57

the multi-armed bandit setting, we prove this under an especially weak averaged exploration58

condition.59

• Asymptotic normality and inference: We establish a martingale central limit theorem60

(CLT) under a moment stability assumption. Applied to our decorrelated estimators, this61

allows us to construct confidence intervals and conduct hypothesis tests in the usual fashion.62

• Validation: We demonstrate the usefulness of the decorrelating construction in two different63

scenarios: multi-armed bandits (MAB) and autoregressive (AR) time series. We observe64

that our decorrelated estimators retain expected central limit behavior in regimes where the65

standard estimators do not, thereby facilitating accurate inference.66

The rest of the paper is organized with our main results in Section 2, discussion of related work in67

Section 3, and experiments in Section 4. An earlier version of this paper was published in ICML68

2018 (citation retracted). This version contains a new ‘limited information’ martingale central limit69

theorem, as well as new results on for the special case of multi-armed bandits.70

2 Main results: W -decorrelation71

We focus on the linear model and assume that the data pairs (yi,xi) satisfy:72

yi = 〈xi, β〉+ εi, (2)

where εi are independent and identically distributed random variables with E{εi} = 0, E{ε2i } = σ273

and bounded third moment. We assume that the samples are ordered naturally in time and let {Fi}i≥074

denote the filtration representing the sample. Formally, we let data points (yi,xi) be adapted to this75

filtration, i.e. (yi,xi) are measurable with respect to Fj for all j ≥ i.76

Our goal in this paper is to use the available data to construct ex post confidence intervals and p-values77

for individual parameters, i.e. entries of β. A natural starting point is to consider is the standard least78

squares estimate:79

β̂OLS = (XT
nXn)−1XT

nyn,

where Xn = [xT
1 , . . .x

T
n] ∈ Rn×p is the design matrix and yn = [y1, . . . yn] ∈ Rn. When data80

collection is non-adaptive, classical results imply that the standard least squares estimate β̂OLS is81

distributed asymptotically as N(β, σ2(XT
nXn)−1), where N(µ,Σ) denotes the Gaussian distribution82

with mean µ and covariance Σ. Lai and Wei [1982] extend these results to the current scenario:83
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Theorem 1 (Theorems 1, 3 [Lai and Wei, 1982]). Let λmin(n) (λmax(n)) denote the minimum (resp.84

maximum) eigenvalue of XT
nXn. Under the model (2), assume that (i) εi have finite third moment85

and (ii) almost surely, λmin(n) → ∞ with λmin = Ω(log λmax) and (iii) log λmax = o(n). Then86

the following limits hold almost surely:87

‖β̂OLS − β‖22 ≤ C
σ2p log λmax

λmin

| 1
nσ2 ‖yn −Xnβ̂OLS‖22 − 1| ≤ C(p) 1+log λmax

n .

Further assume the following stability condition: there exists a deterministic sequence of matrices88

An such that (iii) A−1n (Xn
TXn)1/2 → Ip and (iv) maxi

∥∥A−1n xi
∥∥
2
→ 0 in probability. Then,89

(XT
nXn)1/2(β̂OLS − β)

d⇒N(0, σ2Ip).

At first blush, this allows to construct confidence regions in the usual way. More precisely, the result90

implies that σ̂2 = ‖yn −Xnβ̂OLS‖22/n is a consistent estimate of the noise variance. Therefore, the91

interval [β̂OLS,1 − 1.96σ̂(XT
nXn)−111 , β̂OLS,1 + 1.96σ̂(XT

nXn)−111 ] is a 95% two-sided confidence92

interval for the first coordinate β1. Indeed, this result is sufficient for a variety of scenarios with93

weak dependence across samples, such as when the (yi,xi) form a Markov chain that mixes rapidly.94

However, while the assumptions for consistency are minimal, the additional stability assumption95

required for asymptotic normality poses some challenges. In particular:96

1. The stability condition can provably fail to hold for scenarios where the dependence across97

samples is non-negligible. This is not a weakness of Theorem 1: the CLT need not hold for98

the OLS estimator [Lai and Wei, 1982, Lai and Siegmund, 1983].99

2. The rate of convergence to the asymptotic CLT depends on the quantitative rate of the100

stability condition. In other words, variability in the inverse covariance XT
nXn can cause101

deviations from normality of OLS estimator [Dvoretzky, 1972]. In finite samples, this can102

manifest itself in the bias of the OLS estimator as well as in higher moments.103

An example of this phenomenon is the standard multi-armed bandit problem [Lai and Robbins,104

1985]. At each time point i ≤ n, the experimenter (or data collecting policy) chooses an arm105

k ∈ {1, 2, . . . , p} and observes a reward yi with mean βk. With β ∈ Rp denoting the mean rewards,106

this falls within the scope of model (2), where the vector xi takes the value ek (the kth basis vector),107

if the kth arm or option is chosen at time i.1 Other stochastic bandit problems with covariates such as108

contextual or linear bandits [Rusmevichientong and Tsitsiklis, 2010, Li et al., 2010, Deshpande and109

Montanari, 2012] can also be incorporated fairly naturally into our framework. For the purposes of110

this paper, however, we restrict ourselves to the simple case of multi-armed bandits without covariates.111

In this setting, ordinary least squares estimates correspond to computing sample means for each arm.112

The stability condition of Theorem 1 requires that Nk(n), the number of times a specific arm k ∈ [p]113

is sampled is asymptotically deterministic as n grows large. This is true for certain regret-optimal114

algorithms [Russo, 2016, Garivier and Cappé, 2011]. Indeed, for such algorithms, as the sample115

size n grows large, the suboptimal arm is sampled Nk(n) ∼ Ck(β) log n for a constant Ck(β) that116

depends on β and the distribution of noise εi. However, in finite samples, the dependence on Ck(β)117

and the slow convergence rate of (log n)−1/2 lead to significant deviation from the expected central118

limit behavior.119

Villar et al. [2015] studied a variety of multi-armed bandit algorithms in the context of clinical trials.120

They empirically demonstrate that sample mean estimates from data collected using many standard121

multi-armed bandit algorithms are biased. Recently, Nie et al. [2017] proved that this bias is negative122

for Thompson sampling and UCB. The presence of bias in sample means demonstrates that standard123

methods for inference, as advocated by Theorem 1, can be misleading when the same data is now124

used for inference. As a pertinent example, testing the hypotheses “the mean reward of arm 1 exceeds125

that of 2” based on classical theory can be significantly affected by adaptive data collection.126

The papers [Villar et al., 2015, Nie et al., 2017] focus on the finite sample effect of the data collection127

policy on the bias and suggest methods to reduce the bias. It is not hard to find examples where128

1Strictly speaking, the model (2) assumes that the errors have the same variance, which need not be true
for the multi-armed bandit as discussed. We focus on the homoscedastic case where the errors have the same
variance in this paper.
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Figure 1: The distribution of normalized errors for (left) the OLS estimator for stationary and (nearly)
nonstationary AR(1) time series and (right) error distribution for both models after decorrelation.

higher moments or tails of the distribution can be influenced by the data collecting policy. A simple,129

yet striking, example is the standard autoregressive model (AR) for time series data. In its simplest130

form, the AR model has one covariate, i.e. p = 1 with xi = yi−1. In this case:131

yi = βyi−1 + εi.

Here the least squares estimate is given by β̂OLS =
∑
i≤n−1 yi+1yi/

∑
i≤n−1 y

2
i−1. When |β| is132

bounded away from 1, the series is asymptotically stationary and the OLS estimate has Gaussian tails.133

On the other hand, when β − 1 is on the order of 1/n the limiting distribution of the least squares134

estimate is non-Gaussian and dependent on the gap β − 1 (cf. Chan and Wei [1987]). A histogram135

for the normalized OLS errors in two cases: (i) stationary with β = 0.02 and (ii) nonstationary with136

β = 1.0 is shown on the left in Figure 1. The OLS estimate yields clearly non-Gaussian errors when137

nonstationary, i.e. when β is close to 1.138

On the other hand, using the same data our decorrelating procedure is able to obtain estimates139

admitting Gaussian limit distributions, as evidenced in the right panel of Figure 1. We show a similar140

phenomenon in the MAB setting where our decorrelating procedure corrects for the unstable behavior141

of the OLS estimator (see Section 4 for details on the empirics). Delegating discussion of further142

related work to 3, we now describe this procedure and its motivation.143

2.1 Removing the effects of adaptivity144

We propose to decorrelate the OLS estimator by constructing:145

β̂d = β̂OLS + W n(y −Xnβ̂OLS),

for a specific choice of a ‘decorrelating’ or ‘whitening’ matrix W n ∈ Rp×n. This is inspired by the146

high-dimensional linear regression debiasing constructions of Zhang and Zhang [2014], Javanmard147

and Montanari [2014b,a], Van de Geer et al. [2014]. As we will see, this construction is useful also in148

the present regime where we keep p fixed and n & p. By rearranging:149

β̂d − β = (Ip −W nXn)(β̂OLS − β) + W nεn
≡ b + v.

We interpret b as a ‘bias’ and v as a ‘variance’. This is based on the following critical constraint on150

the construction of the whitening matrix W n:151

Definition 1 (Well-adaptedness of W n). Without loss of generality, we assume that εi are adapted152

to Fi. Let Gi ⊂ Fi be a filtration such that xi are adapted w.r.t. Gi and εi is independent of Gi.153

We say that Wn is well-adapted if the columns of W n are adapted to Gi, i.e. the ith column wi is154

measurable with respect to Gi.155

With this in hand, we have the following simple lemma.156

Lemma 2. Assume W n is well-adapted. Then:157

‖β − E{β̂d}‖2 ≤ E{‖b‖2},
Var(v) = σ2E{W nW

T
n}.
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A concrete proposal is to trade-off the bias, controlled by the size of Ip −W nXn, with the the158

variance which appears through W nW
T
n. This leads to the following optimization problem:159

W n = arg minW ‖Ip −WXn‖2F + λTr(WW T).

Solving the above in closed form yields ridge estimators for β, and by continuity, also the standard160

least squares estimator. Departing from Zhang and Zhang [2014], Javanmard and Montanari [2014a],161

we solve the above in an online fashion in order to obtain a well-adapted W n. We define, W 0 = 0,162

X0 = 0, and recursively W n = [W n−1wn] for163

wn = arg min
w∈Rp

‖I−W n−1Xn−1 −wxTn‖2F + λ ‖w‖22 .

As in the case of the offline optimization, we may obtain closed form formulae for the columns wi164

(see Algorithm 1). The method as specified requires O(np2) additional computational overhead,165

which is typically minimal compared to computing β̂OLS or a regularized version like the ridge or166

lasso estimate. We refer to β̂d as a W -estimate or a W -decorrelated estimate.167

2.2 Bias and variance168

We now examine the bias and variance control for β̂d. We first begin with a general bound for the169

variance:170

Theorem 3 (Variance control). For any λ ≥ 1 set non-adaptively, we have that171

Tr{Var(v)} ≤ σ2

λ (p− E{‖Ip −W nXn‖2F }).

In particular, Tr{Var(v)} ≤ σ2p/λ. Further, if ‖xi‖22 ≤ C for all i:172

Tr{Var(v)} � σ2

λ (p− E{‖Ip −W nXn‖2F }).

This theorem suggests that one must set λ as large as possible to minimize the variance. While this173

is accurate, one must take into account the bias of β̂d and its dependence on the regularization λ.174

Indeed, for large λ, one would expect that Ip −W nXn ≈ Ip, which would not help control the bias.175

In general, one would hope to set λ, thereby determining β̂d, at a level where its bias is negligible in176

comparison to the variance. The following theorem formalizes this:177

Theorem 4 (Variance dominates MSE). Recall that the matrix W n is a function of λ. Suppose that178

there exists a deterministic sequence λ(n) such that:179

E{‖Ip −W nXn‖2op} = o(1/ log n),

P{λmin(XT
nXn) ≤ λ(n) log log n} ≤ 1/n,

Then we have180

‖E{b}‖22
Tr{Var(v)}

= o(1).

The conditions of Theorem 4, in particular the bias condition on Ip −W nXn are quite general. In181

the following proposition, we verify some sufficient conditions under which the premise of Theorem182

4 hold.183

Proposition 5. Either of the following conditions suffices for the requirements of Theorem 4.184

1. The data collection policy satisfies for some sequence µn(i) and for all λ ≥ 1:185

E{ xix
T
i

λ+‖xn‖22
|Gi−1}< µn(i)

λ Ip, (3)∑
i µn(i) ≡ nµ̄n ≥ K

√
n,

for a large enough constant K. Here we keep λ(n) � nµ̄n/ log(p log n).186

2. The matrices (xix
T
i )i≤n commute and λ(n) log log n is (at most) the 1/nth percentile of187

λmin(XT
nXn).188
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Algorithm 1: W -Decorrelation Method
Input: sample (yi,xi)i≤n, regularization λ, unit vector v ∈ Rp, confidence level α ∈ (0, 1),

noise estimate σ̂2.
Compute: β̂OLS = (XT

nXn)−1Xnyn.
Setting W 0 = 0, compute W i = [W i−1wi] with wi = (Ip −W i−1X

T
i )xi/(λ+ ‖xi‖22),

for i = 1, 2, . . . , n.
Compute β̂d = β̂OLS + W n(y −Xnβ̂OLS) and σ̂(v) = σ̂〈v,W nW

T
nv〉1/2

Output: decorrelated estimate β̂d and CI interval
I(v, α) = [〈v, β̂d〉 − σ̂(v)Φ−1(1− α), 〈v, β̂d〉+ σ̂(v)Φ−1(1− α)].

It is useful to consider the intuition for the sufficient conditions given in Proposition 5. By Lemma 2,189

note that the bias is controlled by ‖I−W nXn‖op, which increases with λ. Consider a case in which190

the samples xi lie in a strict subspace of Rp. In this case, controlling the bias uniformly over β ∈ Rp191

is now impossible regardless of the choice of W n. For example, in a multi-armed bandit problem,192

if the policy does not sample a specific arm, there is no information available about the reward193

distribution of that arm. Proposition 5 the intuition that the data collecting policy should explore194

the full parameter space. For multi-armed bandits, policies such as epsilon-greedy and Thompson195

sampling satisfy this assumption with appropriate µn(i).196

Given sufficient exploration, Proposition 5 recommends a reasonable value to set for the regularization197

parameter. In particular setting λ to a value such that λ ≤ λmin/ log log n occurs with high probability198

suffices to ensure that the W -decorrelated estimate is approximately unbiased. Correspondingly, the199

MSE (or equivalently variance) of the W -decorrelated estimate need not be smaller than that of the200

original OLS estimate. Indeed the variance scales as 1/λ, which exceeds with high probability the201

1/λmin scaling for the MSE. This is the cost paid for debiasing OLS estimate.202

Before we move to the inference results, note that the procedure requires only access to high203

probability lower bounds on λmin, which intuitively quantifies the exploration of the data collection204

policy. In comparison with methods such as propensity score weighting or conditional likelihood205

optimization, this represents rather coarse information about the data collection process. In particular,206

given access to propensity scores or conditional likelihoods one can simulate the process to extract207

appropriate values for the regularization λ(n). This is the approach we take in the experiments of208

Section 4. Moreover, propensity scores or conditional likelihoods are ineffective when data collection209

policies make adaptive decisions that are deterministic given the history. A important example is that210

of UCB algorithms for bandits, which make deterministic choices of arms.211

2.3 A central limit theorem and confidence intervals212

Our final result is a central limit theorem that provides an alternative to the stability condition of213

Theorem 1 and standard martingale CLTs. Standard martingale CLTs [see, e.g., Lai and Wei, 1982,214

Dvoretzky, 1972] require convergence of
∑
iwiw

T
i /n to a constant, but this convergence condition215

is violated in many examples of interest, including the AR examples in Section 4.216

Let (Xi,n,Fi,n, 1 ≤ i ≤ n) be a martingale difference array, with the associated sum process217

Sn =
∑
i≤nXi,n and covariance process Vn =

∑
i≤n E{X2

i,n|Fi−1,n}.218

Assumption 1. 1. Moments are stable: for a = 1, 2, the following limit holds219

lim
n→∞

E
{∑
i≤n

V −a/2n

∣∣∣E{Xa
i,n|Fi−1,n, Vn} − E{Xa

i,n|Fi−1,n}
∣∣∣} = 0

2. Martingale differences are small:220

lim
n→∞

∑
i≤n

E
{ |Xi,n|3

V
3/2
n

}
= 0,

lim
n→∞

maxi≤n E{X2
i,n|Fi−1,n}

Vn
= 0 in probability.
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Figure 2: Histograms of the distribution of N1(n)/n, the fraction of times arm 1 is picked under
ε-greedy, UCB and Thompson sampling. The bandit problem has p = 2 arms which have i.i.d.
Unif([−0.7, 1.3]) rewards and a time horizon of n = 1000. The distribution is plotted over 4000
Monte Carlo iterations.

Theorem 6 (Martingale CLT). Under Assumption 1, the rescaled process satisfies221

Sn/
√
Vn

d⇒N(0, 1), i.e. the following holds for any bounded, continuous test function ϕ : R→ R:222

lim
n→∞

E
{
ϕ
(
Sn/

√
Vn
)}

= E
{
ϕ(ξ)

}
,

where ξ ∼ N(0, 1).223

The first part of Assumption 1 is an alternate form of stability. It controls the dependence of the224

conditional covariance of Sn on the first two conditional moments of the martingale increments Xi,n.225

In words, it states that the knowledge of the conditional covariance
∑
i E{X2

i,n|Fi−1,n} does not226

change the first two moments of increments Xi,n by an appreciable amount2.227

With a CLT in hand, one can now assign confidence intervals in the standard fashion, based on the228

assumption that the bias is negligible. For instance, we have result on two-sided confidence intervals.229

Proposition 7. Fix any α > 0. Suppose that the data collection process satisfies the assumptions230

of Theorems 4 and 6. Set λ = λ(n) as in Theorem 4, and let σ̂ be a consistent estimate of σ as in231

Theorem 1. Define Q = σ̂2W nW
T
n and the interval I(a, α) = [β̂da −

√
QaaΦ−1(1 − α/2), β̂da +232 √

QaaΦ−1(1− α/2). Then233

lim supn→∞ P{βa 6∈ I(a, α)} ≤ α.

2.4 Stability for multi-armed bandits234

Limited information central limit theorems such as Theorem 6 (or [Hall and Heyde, 2014, Theorem235

3.4]), while providing insight into the problem of determining asymptotics, have assumptions that are236

often difficult to check in practice. Therefore, sufficient conditions such as the stability assumed in237

Theorem 1 are often preferred while analyzing the asymptotic behavior of martingales. In this section238

we circumvent this problem by proving the standard version of stability (as assumed in Theorem 1)239

for W -estimates, assuming the matrices xixT
i commute. While this is not a complete resolution to240

the problems posed by limited information martingale CLT’s, it applies to important special cases241

like multi-armed bandits.242

Recall that the stability assumed in Theorem 1 requires a non-random sequence of matrices An so243

that244

A−1n XnX
T
n

p→ Ip
When the vectors xi take values among {v1, . . .vp}, a set of orthogonal vectors, we have245

XnX
T
n =

∑
i

xix
T
i

=

p∑
a=1

vav
T
a

∑
i

I(arm a chosen at time i),

=

p∑
a=1

vav
T
aNa(n),

2See Hall and Heyde [2014], Theorem 3.4 for an example of a martingale central limit theorem in this flavor.
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where we define Na(n) =
∑n
i=1 I(xi = va). Therefore, if there existed An so that the stability246

condition held, then we would have, for each a, that Na(n)〈va,A−1n va〉 → 1 in probability.247

We test this assumption in a simple, but illuminating setting: a multi-armed bandit problem with248

p = 2 arms that are statistically identical: they each yield i.i.d. Unif([−0.7, 1.3]) rewards. We run249

ε-greedy (with a fixed value ε = 0.1), Thompson sampling and a variant of UCB for a time horizon of250

n = 1000 for 4000 Monte Carlo iterations. The resulting histograms of the fractionN1(n)/n of times251

arm 1 was picked by each of the three policies is given in Figure 2. Since the arms are statistically252

identical, the algorithm behavior is exchangeable with respect to switching the arm labels, viz.253

switching arm 1 for arm 2. In particular, the distribution of N1(n) and N2(n) is identical, for a given254

policy. Combining this with N1(n) + N2(n) = n, we have that E{N1(n)} = E{N2(n)} = n/2.255

Therefore, if stability a la Theorem 1 held, this would imply that the distribution of fraction N1(n)/n256

would be close to a Dirac delta at 1/2. However, we see that for all the three policies UCB, Thompson257

sampling and ε-greedy, this is not the case. Indeed, N1(n)/n has significant variance about 1/2258

for all the policies; to wit, the ε-greedy indeed shows a sharp bimodal behavior. Consequently, the259

stability condition required by Theorem 1 fails to hold quite dramatically in this simple setting. As260

we observe in Section 4, this affects significantly the limiting distribution of the sample means, which261

have non-trivial bias and poor coverage of nominal confidence intervals.262

In the following, we will prove that W -estimates are indeed stable in the sense of Theorem 1, given a263

judicious choice of λ = λ(n). Suppose that for each time i, xi ∈ {v1, . . . ,vp} the latter being a set264

of orthogonal (not necessarily unit normed) vectors va. We also define Na(i) =
∑
j≤i I(xj = va).265

The following proposition shows that when λ = λ(n) is set appropriately, the W -estimate is stable.266

Proposition 8. Suppose that the sequence λ = λ(n) satisfies (i) λ(n)/λmin(XnX
T
n) → 0 in267

probability and (ii) λ(n)→∞. Then the following holds:268

λ(n)WnWn
T L1→ Ip

2
.

Along with Theorem 4 and Proposition 5, this immediately yields a simple corollary on the distribution269

of W -estimates in the commutative setting. The key advantage here is that we are able to circumvent270

the assumptions of the limited information central limit Theorem 6.271

Corollary 9. Suppose that xi take values in {v1, . . .vp}, a set of orthogonal vectors. Let σ̂2 be an272

estimate of the variance σ2 as obtained from Theorem 1 and β̂d be the W -estimate obtained using273

λ = λ(n) so that λ(n) log log(n)E{λ−1min(XT
nXn)} → 0. Then, with ξ ∼ N(0, Ip) and any Borel274

set A ⊆ Rp:275

lim
n→∞

P
{

(σ̂2λ(n)W nW
T
n)−1/2(β̂d − β) ∈ A

}
= P{ξ ∈ A}.

3 Related work276

There is extensive work in statistics and econometrics on stochastic regression models [Wei, 1985, Lai,277

1994, Chen et al., 1999, Heyde, 2008] and non-stationary time series [Shumway and Stoffer, 2006,278

Enders, 2008, Phillips and Perron, 1988]. This line of work is analogous to Theorem 1 or restricted279

to specific time series models. We instead focus on literature from sequential decision-making, policy280

learning and causal inference that closely resembles our work in terms of goals, techniques and281

applicability.282

The seminal work of Lai and Robbins [Robbins, 1985, Lai and Robbins, 1985] has spurred a283

vast literature on multi-armed bandit problems and sequential experiments that propose allocation284

algorithms based on confidence bounds (see Bubeck et al. [2012] and references therein). A variety285

of confidence bounds and corresponding rules have been proposed [Auer, 2002, Dani et al., 2008,286

Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011, Jamieson et al., 2014] based287

on martingale concentration and the law of iterated logarithm. While these results can certainly be288

used to compute valid confidence intervals, they are conservative for a few reasons. First, they do not289

explicitly account for bias in OLS estimates and, correspondingly, must be wider to account for it.290

Second, obtaining optimal constants in the concentration inequalities can require sophisticated tools291

even for non-adaptive data [Ledoux, 1996, 2005]. This is evidenced in all of our experiments which292

show that concentration inequalities yield valid, but conservative intervals.293
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A closely-related line of work is that of learning from logged data [Li et al., 2011, Dudı́k et al., 2011,294

Swaminathan and Joachims, 2015] and policy learning [Athey and Wager, 2017, Kallus, 2017]. The295

focus here is efficiently estimating the reward (or value) of a certain test policy using data collected296

from a different policy. For linear models, this reduces to accurate prediction which is directly related297

to the estimation error on the parameters β. While our work shares some features, we focus on298

unbiased estimation of the parameters and obtaining accurate confidence intervals for linear functions299

of the parameters. Some of the work on learning from logged data also builds on propensity scores300

and their estimation [Imbens, 2000, Lunceford and Davidian, 2004].301

Villar et al. [2015] empirically demonstrate the presence of bias for a number of multi-armed bandit302

algorithms. Recent work by Dimakopoulou et al. [2017] also shows a similar effect in contextual303

bandits. Along with a result on the sign of the bias, Nie et al. [2017] also propose conditional304

likelihood optimization methods to estimate parameters of the linear model. Through the lens305

of selective inference, they also propose methods to randomize the data collection process that306

simultaneously lower bias and reduce the MSE. Their techniques rely on considerable information307

about (and control over) the data generating process, in particular the probabilities of choosing a308

specific action at each point in the data selection. This can be viewed as lying on the opposite end of309

the spectrum from our work, which attempts to use only the data at hand, along with coarse aggregate310

information on the exploration inherent in the data generating process. It is an interesting, and open,311

direction to consider approaches that can combine the strengths of our approach and that of Nie et al.312

[2017].313

4 Experiments314

In this section we empirically validate the decorrelated estimators in two scenarios that involve315

sequential dependence in covariates. Our first scenario is a simple experiment of multi-armed bandits316

while the second scenario is autoregressive time series data. In these cases, we compare the empirical317

coverage and typical widths of confidence intervals for parameters obtained via three methods: (i)318

classical OLS theory, (ii) concentration inequalities and (iii) decorrelated estimates.319

Figure 3: Multi-armed bandit results. Left: One-sided confidence region coverage for OLS and
decorrelated W -decorrelated estimates of the average reward 0.5β1 + 0.5β2. Right: Probability (PP)
plots for the OLS and W -decorrelated estimate errors of the average reward.
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Figure 4: Multi-armed bandit results. Mean 2-sided confidence interval widths (error bars show 1
standard deviation) for the average reward 0.5β1 + 0.5β2 in the MAB experiment.

4.1 Multi-armed bandits320

In this section, we demonstrate the utility of the W -estimator for a stochastic multi-armed bandit321

setting. Villar et al. [2015] studied this problem in the context of patient allocation in clinical322

trials. Here the trial proceeds in a sequential fashion with the ith patient given one of p treatments,323

encoded as xi = ea with a ∈ [p], and yi denoting the outcome observed. We model the outcome324

as yi = 〈xi, β〉+ εi where εi ∼ Unif([−1, 1]) with β = (0.3, 0.3) being the mean outcome of the325

treatments. Note that the two treatments are statistically identical in terms of outcome. As we will326

see, the adaptive sampling induced by the bandit strategies, however, introduces significant biases in327

the estimates.328

We sequentially assign one of p = 2 treatments to each of n = 1000 patients using one of three329

policies (i) an ε-greedy policy (called ECB or Epsilon Current Belief), (ii) a practical UCB strategy330

based on the law of iterated logarithm (UCB) [Jamieson et al., 2014] and (iii) Thompson sampling331

[Thompson, 1933]. The ECB and TS sampling strategies are Bayesian. They place an independent332

Gaussian prior (with mean µ0 = 0.3 and variance σ2
0 = 0.33) on each unknown mean outcome333

parameter and form an updated posterior belief concerning β following each treatment administration334

xi and observation yi.335

For ECB, the treatment administered to patient i is, with probability 1−ε = .9, the treatment with the336

largest posterior mean; with probability 1− ε, a uniformly random treatment is administered instead,337

to ensure sufficient exploration of all treatments. Note that this strategy satisfies condition (3) with338

µn(i) = ε/p. For TS, at each patient i, a sample β̂ of the mean treatment effect is drawn from the339

posterior belief. The treatment assigned to patient is the one maximizing the sampled mean treatment,340

i.e. a∗(i) = arg maxa∈[p] β̂a. In UCB, the algorithm maintains a score for each arm a ∈ [p] that is a341

combination of the mean reward that the arm achieves and the empirical uncertainty of the reward.342

For each patient i, the UCB algorithm chooses the arm maximizing this score, and updates the score343

according to a fixed rule. For details on the specific implementation, see Jamieson et al. [2014]. Our344

goal is to produce confidence intervals for the βa of each treatment based on the data adaptively345

collected from these standard bandit algorithms. We will compare the estimates and corresponding346

intervals for the average reward 0.5β1 + 0.5β2. As the two arms/treatments are statistically identical,347

this isolates the effect of adaptive sampling on the obtained estimates.348

We repeat the simulation for 5000 Monte Carlo runs. From each trial, we estimate the parameters β349

using both OLS and the W -estimator with λ = λ̂5%,π which is the 5th percentile of λmin(n) achieved350

by the policy π ∈ {ECB,UCB,TS}. This choice is guided by Corollary 4.351

We compare the quality of confidence regions for the average reward 0.5β1 +0.5β2 obtained from the352

W -decorrelated estimator, the OLS estimator with standard Gaussian theory (OLSgsn), and the OLS353

estimator using concentration inequalities (OLSconc) [Abbasi-Yadkori et al., 2011, Sec. 4]. Figure 3354

(left column) shows that the OLS Gaussian have have inconsistent coverage from the nominal. This355

is consistent with the observation that the sample means are biased negatively [Nie et al., 2017]. The356

concentration OLS tail bounds are all conservative, producing nearly 100% coverage, irrespective of357

the nominal level. This is intuitive, since they must account for the bias in sample means [Nie et al.,358

2017]. Meanwhile, the decorrelated intervals improves coverage uniformly over OLS intervals, often359

achieving the nominal coverage.360
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Figure 5: AR(2) time series results. Upper left: PP plot for the distribution of errors of standard
OLS estimate and the W -decorrelated estimate. Upper right: Lower (top) and upper (bottom)
coverage probabilities for OLS with Gaussian intervals, OLS with concentration inequality intervals,
and decorrelated W -decorrelated estimate intervals. Note that ‘Conc’ has always 100% coverage.
Bottom: Average 2 sided confidence interval widths obtained using the OLS estimator with standard
Gaussian theory, OLS with concentration inequalities and the W -decorrelated estimator.

Figure 3 (right column) shows the PP plots of OLS and W -estimator errors for the average reward361

0.5β1 + 0.5β2. Recall that a PP plot between two distributions on the real line with densities P and362

Q is the parametric curve (P (z), Q(z)), z ∈ R [Gibbons and Chakraborti, 2011, Chapter 4.7]. The363

distribution of OLS errors is clearly seen to be distinctly non-Gaussian.364

Figure 4 summarizes the distribution of 2-sided interval widths produced by each method for the365

sum reward. As expected, the W -decorrelation intervals are wider than those of OLSgsn but compare366

favorably with those provided by OLSconc. For UCB, the mean OLSconc widths are always largest.367

For TS and ECB, W -decorrelation yields smaller intervals than OLSconc for moderate confidence368

levels and comparable for high confidence levels. From this, we see that W -decorrelation intervals369

can be considerably less conservative than the concentration-based confidence intervals.370

4.2 Autoregressive time series371

In this section, we consider the classical AR(p) model where yi =
∑
`≤p β`yi−` + εi.. We generate372

data for the model with parameters p = 2, n = 50, β = (0.95, 0.2), y0 = 0 and εi ∼ Unif([−1, 1]);373

all estimates are computed over 4000 monte carlo iterations.374

We plot the coverage confidences for various values of the nominal on the right panel of Figure 5.375

The PP plot of the error distributions on the bottom right panel of Figure 5 shows that the OLS errors376

are skewed downwards, while the W -estimate errors are nearly Gaussian. We obtain the following377

improvements over the comparison methods of OLS standard errors OLSgsn and concentration378

inequality widths OLSconc [Abbasi-Yadkori et al., 2011]379
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The Gaussian OLS confidence regions systematically give incorrect empirical coverage. Meanwhile,380

the concentration inequalities provide very conservative intervals, with nearly 100% coverage,381

irrespective of the nominal level. In contrast, our decorrelated intervals achieve empirical coverage382

that closely approximates the nominal levels. These coverage improvements are enabled by an383

increase in width over that of OLSgsn, but the W -estimate widths are systematically smaller than384

those of the concentration inequalities.385
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Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic398

multi-armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.399

Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions on400

Information Theory, 54(5):2339–2353, 2008.401

Ngai H Chan and Ching-Zong Wei. Asymptotic inference for nearly nonstationary ar (1) processes.402

The Annals of Statistics, pages 1050–1063, 1987.403

Kani Chen, Inchi Hu, Zhiliang Ying, et al. Strong consistency of maximum quasi-likelihood estimators404

in generalized linear models with fixed and adaptive designs. The Annals of Statistics, 27(4):405

1155–1163, 1999.406

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit407

feedback. In COLT, pages 355–366, 2008.408

Yash Deshpande and Andrea Montanari. Linear bandits in high dimension and recommendation409

systems. In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton410

Conference on, pages 1750–1754. IEEE, 2012.411

Maria Dimakopoulou, Susan Athey, and Guido Imbens. Estimation considerations in contextual412

bandits. arXiv preprint arXiv:1711.07077, 2017.413

Miroslav Dudı́k, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. arXiv414

preprint arXiv:1103.4601, 2011.415

Aryeh Dvoretzky. Asymptotic normality for sums of dependent random variables. In Proc. 6th416

Berkeley Symp. Math. Statist. Probab, volume 2, pages 513–535, 1972.417

Walter Enders. Applied econometric time series. John Wiley & Sons, 2008.418
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